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The distinguishable cluster approximation proposed in Paper I [D. Kats and F. R. Manby, J. Chem.

Phys. 139, 021102 (2013)] has shown intriguing abilities to accurately describe potential energy

surfaces in various notoriously difficult cases. The question that still remained open is to what ex-

tend the accuracy and the stability of the method is due to the special choice of orbital-relaxation

treatment. In this paper we introduce orbital relaxation in terms of Brueckner orbitals, orbital op-

timization, and projective singles into the distinguishable cluster approximation and investigate its

importance in single- and multireference cases. All three resulting methods are able to cope with

many multiple-bond breaking problems, but in some difficult cases where the Hartree-Fock orbitals

seem to be entirely inadequate the orbital-optimized version turns out to be superior. © 2014 AIP

Publishing LLC. [http://dx.doi.org/10.1063/1.4892792]

I. INTRODUCTION

Electron correlation energy, defined as the difference be-

tween the exact electronic energy in the given basis and the

mean-field Hartree-Fock (HF) energy, represents usually a

relatively small contribution, which is, however, essential for

an accurate description of chemical processes. In cases where

the HF determinant is a good reference the (dynamic) correla-

tion energy can be efficiently captured by the post-HF single-

reference techniques, e.g., the coupled-cluster doubles theory

(CCD).1 For molecular systems with large amount of static

correlation these methods generally fail, and in this cases

usually multireference techniques are employed, which are

much more difficult both computationally and methodologi-

cally. There are many attempts to develop methods capable to

treat strong correlation in the single-reference framework.2–7

Very recently we have proposed a method named the dis-

tinguishable cluster doubles (DCD) approximation,8 which

retains the simplicity and efficiency of the single-reference

treatment, but is accurate and robust in the strongly correlated

cases, e.g., in bond-breaking processes. Furthermore, even in

single-reference cases the accuracy of DCD turned out to be

superior to the conventional CCD counterpart.

Generally the main part of dynamic electron correlation

can be captured by electron-pair parameters, and pure pair

theories like CCD are sufficient for a decent accuracy. How-

ever, the uncorrelated HF quasiparticles are generally not en-

tirely appropriate, and in high precision calculations have to

be replaced by quasiparticles that include the influence of the

electron correlation. In multireference cases the update of the

HF orbitals becomes even more vital.

The update of the quasiparticles, i.e., the orbital relax-

ation, can be achieved by either explicit orbital rotations or

by introduction of single excitations in the theory. One way

of rotating the orbitals is to demand that the single excita-

tions, if introduced in the wavefunction, would still remain

zero. This approach was proposed by Brueckner for nuclear

matter,9 and was applied to quantum chemistry by Nesbet.10

These Brueckner orbitals were used later for CCD, and the

method is known as Brueckner CCD (BCCD).11, 12 Another

way to relax the orbitals is to actually optimize the full La-

grangian with respect to the orbital rotations,13–15 which is

still an exact procedure for a doubles-only theory.16 The ad-

vantage of this approach is that the resulting theory is station-

ary with respect to orbitals, and therefore it is easier to calcu-

late higher order properties. Even the gradients are somewhat

easier, since there are no derivatives of singles terms with re-

spect to orbital coefficients.

Partial orbital relaxation can be achieved by using single

excitations.17 It is advantageous to use them in exponen-

tial form, otherwise some parts of the orbital relaxation

will be hidden in the higher excitations increasing their

importance and thus decreasing the quality of a truncated

method. Although it is possible to solve the singles equations

variationally18 a more practical way is to use a projected

singles approach as was done in CCD with singles (CCSD).19

Since this relaxation does not directly affect the actual

orbitals, integrals do not have to be recalculated in each

iteration. It makes this approach especially useful for local

correlation20–22 methods, where the integral transformations

often consume a considerable part of computational time.

In the following we study the performance of all the

three mentioned orbital-relaxation approaches in the context

of the distinguishable cluster approximation in single- and

multireference cases.

II. THEORY

The distinguishable cluster approximation is derived as

a modification of the CCD amplitude equations by im-

posing distinguishability of particles, belonging to differ-

ent pairs, and retaining the main desired properties of the

CCD: exactness for two-particle systems (more precisely,

0021-9606/2014/141(6)/061101/4/$30.00 © 2014 AIP Publishing LLC141, 061101-1
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HF-quasiparticles), size extensivity, invariance to rotations

within occupied and virtual spaces, and particle-hole symme-

try. The resulting DCD amplitude equations within the spin-

free formalism are shown below and differ from the CCD

equations in quadratic terms only,

R
ij

ab = (ai|bj ) + (ac|bd)T
ij

cd + (ki|lj )T kl
ab + T̃ ik

ac (kc|ld)T̃
lj

db

+P(ia; jb)
{

xacT
ij

cb − xkiT
kj

ab − (ki|ac)T
kj

cb

− (ki|bc)T
kj
ac + T̃ ik

ac (kc|bj )
}

= 0, (1)

where

xac = fac −
1

2
T̃ kl

ad (ld|kc) xki = fki +
1

2
T̃ il

cd (ld|kc)

(2)

T̃
ij

ab = 2T
ij

ab − T
ij

ba P(ia; jb)X
ij

ab = X
ij

ab + X
ji

ba,

and T
ij

ab are the DCD amplitudes, (pq|rs) – the electron re-

pulsion integrals in the chemical notation, and fpq – the Fock

matrix. The indices i, j, k, . . . , a, b, c, . . . , and p, q, r, . . . de-

note the occupied, virtual, and general orbitals, respectively.

In the equations we also assume an implicit summation over

repeated indices. The DCD equations can be factorized using

density-fitting technique23–25 even further such that the com-

putation time of quadratic terms would scale with the fifth

power of the molecular size only.26

The DCD theory is yet not exact for two real parti-

cles (but only for the HF-quasiparticles). However, exactness

for two real particles can be achieved by allowing for full

or partial orbital relaxation. Relaxing orbitals for DCD us-

ing Brueckner condition10–12 was considered in Paper I.8 Al-

though a DCD wavefunction cannot be properly specified, one

can formally assume that there is a DCD wavefunction � con-

taining only doubles, and then the orbitals are rotated such

that the condition
〈

�i
a

∣

∣H|�〉 = 0 (3)

is fulfilled. �i
a denotes a singly excited determinant and H

is the Hamilton operator. The resulting BDCD equations dif-

fer from the BCCD equations only in the doubles residual,

Eq. (1).

In the second method, orbital-optimized DCD (ODCD),

the rotated orbitals are obtained by minimizing the DCD La-

grangian with respect to the orbital coefficients. This method

is roughly twice as computationally expensive as BDCD,

since here one needs to simultaneously calculate the doubles

amplitudes and the doubles Lagrange multipliers. The prob-

lem of not converging to the exact limit arises only for higher

than doubles excitations,16 and therefore ODCD, as a pair the-

ory, is exact for two-electron systems.

Finally, we consider a partial orbital relaxation using pro-

jective singles ansatz. We employ the similarity-transformed

Hamiltonian exp(−T1)H exp(T1), which leads to the DCD

with singles (DCSD) equations, based on dressed integrals

and Fock matrices.27 It is easy to show that the quadratic terms

in the doubles amplitude equations contain only undressed in-

tegrals, since all particle/hole lines in the corresponding dia-

grams are connected to doubles amplitudes. As a result, the

DCSD equations differ from the corresponding CCSD equa-

tions in the same way as DCD from CCD, i.e., only in the

terms, quadratic in the doubles amplitudes, while all other

terms remain the same.

III. RESULTS

The BDCD, ODCD, and DCSD methods were imple-

mented by modification of the MOLPRO’s28, 29 BCCD, OCCD,

and CCSD routines,30, 31 respectively. All calculations were

based on a restricted HF reference, frozen-core approxima-

tion has been employed, and the molecular dissociations were

performed using the cc-pVDZ gaussian basis set.

We start by investigating influence of orbital-relaxation

techniques on nitrogen dissociation (Figure 1(a)). The BDCD,

ODCD, and DCSD curves look very similar; neither of the

methods has problems in this otherwise notoriously difficult

case for a single-reference theory (see, e.g., the CCSD curve).

Even without relaxing orbitals the DCD curve looks smooth

and qualitatively correct. The DCSD curve is a little bit lower

than other curves, which is somewhat surprising considering

the fact that ODCD energy is obtained by minimizing a La-

grangian while the DCSD energy is a projective method.

The next standard example where the coupled-cluster

theory has difficulties is a symmetric double dissociation

of water (Figure 1(b)). As in the case of nitrogen dissocia-

tion, the DC curves with different orbital relaxation schemes

are nearly on top of each other. The DCSD curve is again

slightly lower, especially in the strong-correlation regime, and

FIG. 1. Potential energy curves. Top: N2 dissociation. Middle: symmetric

double dissociation of H2O with H–O–H angle fixed at 107.6◦. Bottom: CO

dissociation.
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FIG. 2. Potential energy curves for H20-chain dissociation.

is therefore closer to the reference curve from the Davidson-

corrected internally contracted multireference configuration

interaction (MRCI+Q) method.32 As one would expect, the

DCD curve deviates from other curves much stronger for

larger O–H distances, manifesting poor quality of the HF ref-

erence in this region.

Dissociation of carbon monoxide represents another

challenging case for single-reference methods (Figure 1(c)).

As expected, the DC methods yield nearly identical results at

equilibrium distance. But at stretched geometries the meth-

ods start to deviate, and the orbital optimized version of DC

provides the smoothest curve. The BDCD curve has a small

non-physical bump, while DCSD demonstrates peculiar arti-

facts after the Coulson-Fischer33 point. Apparently the orbital

relaxation is particularly important for this system, since the

DCD method has the biggest problems among all DC schemes

considered here, with a jump in the energy of nearly 150 mH

at the interatomic distance of 4.55 bohrs (note that this form

of the potential curve is exactly reproduced if one starts from

5-bohr values and recalculates the curve in the association

direction). Apart from that, we experienced substantial con-

vergence problems in this system. Even the MRCI method

was not converging for separations beyond 4 bohrs when

for the preceding multi-configurational self-consistent field

(MCSCF) calculations the HF orbitals were chosen as a start-

ing guess.

The original BDCD method performed remarkably well

in the case of massively correlated hydrogen systems. In or-

der to test the sensitivity of orbital-relaxation techniques to

large doubles amplitudes we performed calculations on a lin-

ear equidistant H20 chain using all types of DC methods (Fig-

ure 2). All three relaxation techniques seem to handle the ex-

ploding doubles (with squared norms over 30) very well. Only

at large separations the curves start to deviate, although the

difference is still very small (less than 12 mH at 5-bohr sepa-

ration).

FIG. 3. Interaction energy curves for Ne dimer.

TABLE I. Mean absolute deviation (MAD), root mean squared deviation

(RMSD), and maximal deviation (MAX) of reaction energies (aug-cc-pVTZ)

from Ref. 35 compared to CCSD(T) calculations.

MAD RMSD MAX

Methods kJ/mol

CCSD 5.13 7.14 27.7

BDCD 3.62 4.99 15.6

ODCD 3.41 4.70 14.0

DCSD 3.21 4.40 12.7

DCD 5.01 6.73 19.6

In order to test the quality of the different DC meth-

ods also for single-reference problems, we have used them to

calculate neon-dimer counterpoise-corrected interaction en-

ergies and reaction energies of various molecules in aug-cc-

pVTZ basis sets. Neon dimer is a difficult case for CCSD but

the perturbative-triples correction (CCSD(T))34 improves re-

sults considerably (Figure 3). It turned out that the DC meth-

ods noticeably improve on the CCSD results although the val-

ues are still far from the CCSD(T) ones. And as expected

for problems for which Hartree-Fock is a good reference the

curves for different handling of orbital relaxation are very

similar; although at this microhartree scale one can see that

the DCSD curve is lower than the other curves resulting in

slightly closer agreement with the CCSD(T) reference.

Performance of the orbital-relaxation techniques for cal-

culating relative energies was tested using a set of reactions

from Ref. 35 that was already utilised in Paper I.8 In Ta-

ble I we have compiled various quality measures of reaction-

energy calculations (mean-absolute, root mean squared, and

maximal deviations) in comparison to CCSD(T) values. As

already noted in Ref. 8 DC provides a better accuracy than

BCCD even in single-reference cases. This observation is

confirmed also for other orbital-relaxation schemes. The most

accurate results are obtained using DCSD, showing an im-

provement with respect to CCSD by 60% in mean absolute

deviation (MAD) and root mean squared deviation (RMSD),

and by more than 110% in the maximal deviation. Even the

DCD method, which misses the orbital relaxation entirely,

outperforms CCSD in all the three statistical measures.

IV. CONCLUSION

It is generally important to include orbital relaxation

when aiming for highly accurate results in the correlated cal-

culations. Moreover, if the HF reference does not provide

good description of the molecular system, it can become es-

sential even for qualitative description. We have investigated

three ways to introduce orbital relaxation into the recently

proposed DCD method:8 Brueckner orbitals, orbital optimiza-

tion, and singles similarity transformation. Despite substan-

tial differences in the formalism, all three methods were able

to provide qualitatively appropriate potential energy curves

for nitrogen, water, and the hydrogen chain. Interestingly, the

DC method even without orbital relaxation (i.e., DCD) was

providing reasonable results for these systems. The DC meth-

ods are thus much less sensitive to orbital relaxation than the
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models of Refs. 6 and 7, which generally require a proper

choice of orbitals. But in some cases a proper orbital relax-

ation is indispensable. Carbon monoxide appears to represent

a challenging case in this respect. Only orbital optimization

was able to reproduce a proper dissociation potential energy

curve. The BDCD curve was also reasonable, but with small

non-physical deviations. At the same time, DCSD and espe-

cially DCD failed to describe dissociation of this molecule.

We also note that DCSD energies are consistently lower

than the corresponding BDCD and ODCD ones. Since the DC

energies at dissociation are usually somewhat above the exact

values, results from similarity-transformation based orbital

relaxation come out better compared to the other DC meth-

ods. Unfortunately a naive approach to minimize the DCSD

energy by rotating orbitals and get even lower values would

fail to converge because of the high redundancy in the result-

ing equations.13 The DCSD also gives best relative energies

(using CCSD(T) as reference), although the difference is tiny

and may be caused by the fact that our reference values are

biased toward the projective singles approach.

The big advantage of DCSD compared to BDCD or

ODCD is the simplicity of extensions to the explicitly

correlated36, 37 and linearly scaling local correlation methods.

By utilizing density-fitting technique the quadratic doubles di-

agrams needed in DCSD can be implemented with a nominal

O(N 5) scaling with respect to the molecular system size re-

sulting in a much faster method for calculations with large

pair lists.26 Further simplifications for weak pairs in the spirit

of Ref. 38 and 39 are also feasible.
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2J. Paldus, J. Čížek, and M. Takahashi, Phys. Rev. A 30, 2193 (1984).
3K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).
4J. B. Robinson and P. J. Knowles, J. Chem. Phys. 135, 044113 (2011).
5D. W. Small and M. Head-Gordon, J. Chem. Phys. 137, 114103 (2012).
6T. Stein, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 140, 214113

(2014).

7K. Boguslawski, P. Tecmer, P. A. Limacher, P. A. Johnson, P. W. Ayers, P.

Bultinck, S. D. Baerdemacker, and D. V. Neck, J. Chem. Phys. 140, 214114

(2014).
8D. Kats and F. R. Manby, J. Chem. Phys. 139, 021102 (2013).
9K. A. Brueckner, Phys. Rev. 96, 508 (1954).

10R. K. Nesbet, Phys. Rev. 109, 1632 (1958).
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