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In local coupled cluster treatments the electron pairs can be classified according to the magnitude

of their energy contributions or distances into strong, close, weak, and distant pairs. Different

approximations are introduced for the latter three classes. In this communication, an improved

simplified treatment of close and weak pairs is proposed, which is based on long-range cancel-

lations of individually slowly decaying contributions in the amplitude equations. Benchmark

calculations for correlation, reaction, and activation energies demonstrate that these approxi-

mations work extremely well, while pair approximations based on local second-order Møller-

Plesset theory can lead to errors that are 1-2 orders of magnitude larger. C 2015 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4916316]

The applicability of local coupled-cluster methods1–14 to

large molecular systems relies on domain and pair approxima-

tions.1 The domain approximation means that excitations from

localized Hartree-Fock (HF) orbitals φi, φ j are restricted to a

spatially close subspace of local virtual orbitals, while the pair

approximations introduce simplifications for distant orbital

pairs that have only small contributions to the correlation

energy. For a long time, it was believed that the domain

approximation is most critical. The errors caused by weak

pair approximations were assumed to be small since the

pair correlation energies decay as r−6
i j

with the distance ri j
between the charge centroids of the local orbitals φi and φ j.

However, this situation has changed, since with modern pair

natural orbital (PNO) approaches,8–25 the domain error can be

systematically controlled and made very small (<1 kJ mol−1

for relative energies), in particular when explicitly correlated

terms are included.5,12,25,26 On the other hand, we demonstrate

in the current work that pair approximations based on local

second-order Møller-Plesset theory (LMP2) can lead to very

large errors (up to ≈40 kJ mol−1 in the present examples)

for reaction and activation energies of complex chemical

reactions.

Pair approximations are also implicit in fragmentation

approaches,27–37 in which (overlapping) groups of orbitals

are correlated independently. These methods rely on the

assumption that the contribution of amplitudes that are not

included in a fragment has a negligible effect on the computed

pair energies.

The problem of pair approximations in local coupled

cluster methods is particularly severe if intermolecular inter-

actions are computed. Improved approximations for this case

have recently been described by Schütz and co-workers,

a)Author to whom correspondence should be addressed. Electronic mail:
werner@theochem.uni-stuttgart.de

using a PAO-LCCSD(T) (projected atomic orbital based local

coupled-cluster with single, double, and perturbative triple

excitations) method.38,39 Here, we propose similar approxima-

tions for a newly developed PNO-LCCSD program and apply

them to compute reaction and activation energies of systems

in which strong long-range dispersion contributions can be

expected. We will demonstrate that with these approximations

the errors of reaction and activation energies are below

1 kJ mol−1 (relative to a corresponding calculation without

pair approximations), while still significant savings of central

processing unit (CPU)-time and storage can be achieved.

The orbital pairs i j are divided into 4 classes: strong,

close, weak, and distant. Different approximations will be

applied for these classes. The pairs in each class are selected

using PNO-LMP2 pair energies Ei j. Pairs with Ei j ≥ Tclose are

strong, those with Tclose > Ei j ≥ Tweak are close, those with

Tweak > Ei j ≥ Tdist are weak, and the remaining ones distant.

The latter are treated using a non-iterative dipole-dipole

approximation,13,25,40 which is also used to select the pairs in

this class. Throughout this work, we will use Tdist = 1 µH. The

effect of this threshold on correlation and reaction energies has

been studied in detail earlier13,25 and is not considered here. We

note in passing that the selection of the pair classes using pair

energies is preferable over using distance criteria, as applied

earlier.3,38,39 Extensive tests showed that the convergence is

smoother and fewer strong and close pairs are needed to reach

a certain accuracy than with distance criteria.

Our goal is to develop a highly accurate PNO-LCCSD(T)-

F12 program that can be applied to large molecular systems

of chemical interest. However, in the current work, we

restrict our discussion and benchmark calculations to local

coupled-cluster with doubles (LCCD), since this clearly

separates the pair effects from further contributions and

approximations involving single and triple excitations. LCCD

includes all terms that are of 3rd-order in the energy (within the

0021-9606/2015/142(12)/121102/5/$30.00 142, 121102-1 © 2015 AIP Publishing LLC
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Møller-Plesset partitioning), and if a noticeable error due to

the pair approximation would occur already at this level, there

would be no chance to obtain good accuracy within the higher-

order LCCSD or LCCSD(T) treatments.

Occupied (internal) orbitals will be denoted by indices

i, j, k, l and virtual (external) orbitals by a,b,c,d. In the

following discussion, all orbitals are assumed to be local

and orthonormal. In practice, non-orthogonal virtual orbitals

[projected atomic orbitals (PAOs),1–4 orbital specific virtuals

(OSVs),41–43 or PNOs8–25] are used, which leads to additional

contractions with overlap matrices, but the general arguments

are not affected.

In the LCCD amplitude equations only 0-external inte-

grals (ik |l j), two-external integrals (kl |ab) and (ak |lb),

and four-external integrals (ab|cd) occur. The contributions

of the exchange integrals (ak |lb) are not affected by the

following discussion and therefore not explicitly shown. The

contributions of the other three integral classes to a coupled-

cluster with doubles (CCD) residual R
i j

ab
are

R
i j

ab
=


cd

(ac|bd)T
i j

cd
+


kl

(ik |l j)T kl
ab −



kc



T
k j
ac(cb|ik)

+ (ac|k j)T ik
cb + (ac|ik)T

k j

cb
+ T ik

ac(cb|k j)


+ · · ·.

(1)

Let us first consider the 4-external term (ac|bd)T
i j

cd
and assume

that i and j are distant. From simple perturbative considerations

and multipole expansions of the integrals it follows that a,c

must then be close to i, while b,d must be close to j. The

amplitudes T
i j

cd
decay with r−3

i j
. Furthermore, unless a = c

or b = d, the integrals (ac|bd) also decay with r−3
i j

, since

the density ρac(r) = φa(r)φc(r) carries no charge and only

dipole-dipole interactions contribute in lowest order. Thus, the

whole contribution to the residual decays with r−6
i j

, unless a = c

and/or b = d. The corresponding energy contribution decays

approximately with r−9
i j

.

Exceptions to this very fast decay are the cases a = c

and/or b = d. The dominant contribution will be (aa|bb)T
i j

ab
.

This contribution decays much more slowly with r−4
i j

, since the

densities ρaa and ρbb each carry a unit charge. The next impor-

tant contributions are


d,b(aa|bd)T
i j

ad
+


c,a(ac|bb)T
i j

cb
,

which decay asymptotically with r−5
i j

.

The asymptotic decay properties of the other terms in the

residual (1) can be determined similarly. If we separate out the

“diagonal” contributions of T
i j

ab
, we get

R
i j

ab
= T

i j

ab
[(aa|bb) + (ii | j j)

− (aa| j j) − (ii |bb) − (aa|ii) − (bb| j j)] . . . . (2)

The first four terms decay individually with r−4
i j

, the last

two even more slowly with r−3
i j

. However, the first four

integrals, which can also be written as (aa − ii |bb − j j), cancel

approximately.38 This happens because the charge centroids of

ρaa and ρii will be close together, and those of ρbb and ρ j j as

well. Each of these distributions carries a unit charge, but since

the charges of ρaa − ρii and ρbb − ρ j j are zero, the integral

(aa − ii |bb − j j) decays with r−3
i j

and the whole contribution

T
i j

ab
(aa − ii |bb − j j) with r−6

i j
. These considerations can be

extended to the 4-external integral contributions that decay

individually with r−5
i j

. These again cancel approximately with

2-external terms, and the total contribution of


c,b

T
i j
ac[(aa|cb) − (ii |cb)] +



c,a

[(ac|bb) − (ac| j j)]T
i j

cb

(3)

then also decays as r−6
i j

. A similar asymptotic cancellation

occurs between the 0-external and 2-external contributions


l, j

T il
ab[(ii |l j) − (aa|l j)] +



k,i

[(ik | j j) − (ik |bb)]T
k j

ab
.

(4)

In summary,

T
i j

ab
(ii | j j) +



cd

T
i j

cd
(ac|db) −



d

T
i j

ad
(ii |db) −



c

(ac| j j)T
i j

cb

(5)

decays with r−6
i j

and will therefore be neglected for close and

weak pairs. Similarly,


kl,i j



T kl
ab(ik | jl) −



d

δl jT
kl
ad(ik |bd) −



c

δik(ac| jl)T kl
cb



(6)

decays asymptotically with r−6
kl

. Since the integrals decay

exponentially with the distances rik, r jl, rac, and rbd, Eq. (6)

also decays with r−6
i j

. This means that the first four terms of

Eq. (1) can be neglected entirely unless the involved residual

and amplitude matrices correspond to strong pairs. Altogether,

this causes a small error in the energy that decays very quickly

with r−9
i j

. If the close pairs are treated by LMP2 as in previous

methods, the error is larger and decreases much more slowly

with r−6
i j

. This is partly due to the last two terms in Eqs. (1)

and (2), which should be fully included.38

In the following, we will demonstrate the effect of

these approximations on the dissociation energy of a gold(I)-

aminonitrene complex (AuC41H45N4P, denoted AuAmin, see

Fig. 1). This reaction is taken from Ref. 44 and plays an

important role in catalytic aziridination and insertion reactions.

The AuAmin molecule has three phenyl and three mesityl

groups and therefore strong long-range dispersion interactions

are expected. The calculations have been carried out using the

VDZ-F12 basis set,45 which is of augmented triple-zeta quality

for the valence s and p orbitals and has a double polarization

d-shell. For the gold atom, the ECP60MDF effective core

FIG. 1. The gold reaction studied in

this paper.
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FIG. 2. Correlation energies for AuAmin (left panel) and reaction energies (middle panel) using various close-pair approximations as a function of the number

of strong pairs. The values of Tclose for the 7 points were (in mH) 1.0, 0.3, 0.2, 0.1, 0.06, 0.03, and 0.01. Right panel: reaction energies using in addition various

weak pair approximations (see text).

potential46 for the inner 60 electrons along with the cc-pVDZ-

PP basis set47 was used. All molecular structures and other

computational details can be found in the supplementary

material.48 Additional results for correlation, reaction, and

activation energies of three further reactions are presented

therein as well.

Fig. 2 shows the PNO-LCCD correlation energies for

AuAmin (left panel) and the reaction energy (middle panel)

as a function of the number of strong pairs, using three

different close-pair approximations. No weak pair approx-

imations were employed here, i.e., Tweak = Tdist. The black

horizontal bar corresponds to the correlation and reaction

energies obtained with the PNO-LCCD method without any

close pair approximations (cf. Table I in the supplemen-

tary material48). With keepcls = 0, the close pair energies

are taken from the preceding LMP2 calculation, and only

the strong pairs are optimized in the LCCD calculation.

Hence, the strong and close pairs are entirely decoupled.

This can be considered as the simplest close or weak

pair approximation. It has been used in early PNO-LCCSD

methods,2,3 as well as in the LPNO-CCSD (local PNO-CCSD)

method of Riplinger and Neese13 (however, in their program,

the weak pair energy is obtained using a semi-canonical

MP2 approximation, which can introduce additional errors).

Fig. 2 shows that the keepcls = 0 approximation leads to

a strong overestimation of the correlation energies. For the

largest threshold (1 mH), this error amounts to 102 mH

for the correlation energy of the AuAmin molecule. For

keepcls = 1, the close-pair amplitudes and energies are still

taken from the preceding LMP2, but the amplitudes are

included in the LCCD equations for the strong pairs. This

approximation has been applied in Refs. 4 and 5. It leads

to a significant improvement, but nevertheless the errors of

the correlation energy stay rather large (34 mH) and decay

only slowly with an increasing number of strong pairs. Note

that the difference of the correlation energies for keepcls = 0

and keepcls = 1 solely arises from the strong pairs, since

in both cases all remaining pair energies are taken from the

preceding LMP2 calculation. Finally, the new approximation

(keepcls = 2) leads to a dramatic improvement. The largest

error of the correlation energy is now reduced to 0.6 mH and

hardly visible on the scale of the figure. Note that in this

case the close-pair amplitudes are fully optimized, but without

the terms in Eqs. (5) and (6). These findings are qualitatively

similar for all other molecules studied in this work, though the

absolute errors for the other systems are smaller.48

The effect of the keepcls = 0 and keepcls = 1 approx-

imations on the reaction energies is drastic. The errors for the

largest threshold of 1 mH amount to 42 and 17 kJ mol−1, respec-

tively. The error for keepcls = 0 and a threshold of 0.1 mH

still amounts to 24 kJ mol−1. This corresponds to the threshold

used by default in the LPNO-CCSD method of Riplinger and

Neese.13 In a very recent paper,16 Liakos et al. recommended

a tighter threshold of 0.01 mH for highly accurate LPNO-

CCSD calculations. But even with this threshold the error still

amounts to 4.3 kJ mol−1 (1 kcal/mol). For our new method

(keepcls = 2), the error of the reaction energy is reduced to

0.6 kJ mol−1 already for the largest threshold of 1 mH. The

error quickly converges to zero with smaller thresholds. For

Tclose = 0.1 mH it amounts to only 0.1 kJ mol−1. Similar results

are obtained for the other three systems.48

The computed reaction energy can be compared to an

experimental gas-phase value44 of 196.5 ± 11.2 kJ/mol (this

value is obtained by subtracting the PW91/cc-pVTZ-pp zero-

point correction44 of −8.2 kJ/mol from the measured value

and can therefore be compared directly to computed energy

differences without ZPE). The PNO-LMP2-F12 reaction

energies for the basis sets VDZ-F12 and VTZ-F12 are

250.0 and 250.5 kJ/mol, respectively (including the CABS

singles corrections for the errors of the HF energies48).

Based on previous benchmarks,25 we believe that the VTZ-

F12 result should be close to the MP2/CBS value. Adding

the PNO-LCCD/VDZ-F12 correction of −56.2 kJ/mol yields

194.3 kJ/mol, which is already well within the experimental

error bounds. It can be expected that this value will increase if

the singles and triples contributions are added.

From a practical point of view, the advantage of the

close pair approximation is twofold: first, removing the terms

in Eq. (5) for close and weak pairs substantially reduces

the number of 4-external integrals, which are expensive to

compute. In the AuAmin calculation, 5102 non-distant pairs

are included in the PNO-LCCD calculation, but for Tclose

= 1 mH, the 4-external integrals have to be computed only for

the 702 strong pairs, i.e., for 14% of all pairs. For each pair i j, a

distinct set of 4-external integrals (ai jci j |bi jdi j) is needed (ai j

denotes a PNO belonging to pair i j). The total number of these

integrals is reduced from 7.3 × 109 to 3.7 × 109. This is less

than expected from the number of pairs because the domains
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for weak pair are much smaller than those for strong pairs.

However, in the density fitting algorithm, the 3-index integrals

are first computed in the PAO basis, in which the domains are

of similar size for all pairs. The number of these integrals is

reduced by a factor of 9, and the overall computation time for

the 4-external integrals is reduced by a factor of about 6.

Second, neglecting Eq. (6) for close and weak pairs

reduces the number of required 0-external integrals from

50.8 × 106 to 0.8 × 106 and the number of overlap integrals

from 25.2 × 109 to 3.8 × 109. The latter reduction occurs

because in the PNO case the 0-external contributions to R
i j

ab

are


kl


cd(ik | jl)⟨a

i j |ckl⟩T kl
cd
⟨dkl |bi j⟩, and the overlap matrix

elements ⟨ai j |ckl⟩ are then only needed if i j and kl are strong

(but further overlap matrix elements of this type are required

for other terms).

Even if the contributions T kl
ab
(ik | jl) are only included

for strong pairs i j and kl as discussed above, the remaining

number of these terms still scales quadratically with the

molecular size. This can be avoided by realizing that the

integrals (ik | jl) decay exponentially with the distances rik
and r jl. One can therefore neglect these terms unless ik and jl

or j k and il are strong pairs [integrals (ik | jl) and (il | j k) are

always treated together]. This reduces the number of 0-external

integrals by another order of magnitude to only 0.07 × 106,

but the reaction energy is affected by only 0.1 kJ mol−1.

Similar approximations are possible for other terms in the

PNO-LCCSD equations, but a detailed discussion is beyond

the scope of this communication.

In order to achieve larger savings than with the approxi-

mations discussed so far, additional weak pair approximations

can be introduced. The right panel of Fig. 2 shows the PNO-

LCCD reaction energies using Tweak = Tclose/10. The close-pair

approximations are the same as before (keepcls = 2), and

they are also employed for the weak pairs (where applicable).

For comparison, 4 different weak approximations are shown.

LMP2(uncoupled) means that the weak pair energies are taken

from the preceding PNO-LMP2 calculation without change,

and the weak pair amplitudes are not included in the LCCD

residuals for the strong and close pairs. As already seen

before, this leads to large and very slowly decaying errors.

In the LMP2(coupled) cases, the weak pair amplitudes are

included in the strong and close pair residuals. The open

triangles (dashed line) represent values obtained using the

original LMP2 amplitudes, while the full triangles (full line)

are obtained with LMP2 amplitudes that are re-optimized in

the LCCD calculation, using the LMP2 residual equations

(which are part of the LCCD ones). This re-optimization,

which includes the coupling to the strong and close pairs,

has only a very small effect, and the results are still inaccurate.

Better accuracy is only achieved if the weak pair amplitudes

are optimized at a higher level. We used CEPA-2,49 and for

the threshold Tclose = 1 mH the error then amounts to only

1.8 kJ mol−1 [0.6 kJ of which is due to the neglect of the terms in

Eqs. (5) and (6) for close and weak pairs]. This error is quickly

decaying, and for Tclose = 0.1 mH it is reduced to 0.3 kJ mol−1.

Using linearized coupled-cluster (CEPA-0) for the weak pairs

yields virtually the same results, since the CEPA-0 and CEPA-2

residuals R
i j

ab
only differ by a term −Ei jT

i j

ab
, and the weak-pair

energies Ei j are very small.

We found that it is not necessary to include the weak pair

amplitudes in the non-linear terms of the strong and close pairs.

For the tested range of thresholds, this affects the reaction

energy by at most 0.4 kJ mol−1. However, if the non-linear

terms in the close pairs are entirely neglected, the error of

the reaction energy increases by 2.3 kJ mol−1. For the other 3

studied systems,48 the results are similar, and in all three cases

the errors of the computed reaction and activation energies

were below 1 kJ mol−1, using Tclose = 1 mH, Tweak = 0.1 mH.

In summary, this work shows that close and weak pair

approximations based on LMP2 pair energies are poor and can

lead to large errors of absolute and relative energies, which are

very slowly decaying with increasing number of strong pairs.

A large fraction of these errors stems from the neglect of

the weak pair amplitudes in the residuals for the strong and

close pairs. Furthermore, it is not sufficient to use LMP2 weak

pair amplitudes to avoid this error. This should also affect the

accuracy of fragmentation approaches27–37 and implies that

the fragments must be very large in order to obtain converged

results.

We have compared and discussed various new approxima-

tions for close and weak pairs. It was shown that the calculation

and processing of the 0-external and 4-external integrals can be

avoided for close and weak pairs due to systematic long-range

cancellations with contributions of 2-external integrals. This

approximation causes only a very small and quickly decaying

error in the correlation energy. In addition, the residuals for the

weak pairs can be simplified by omitting the non-linear terms.

Even though this means that the remaining linear (CEPA) terms

in the LCCD equations should be included for all non-distant

pairs, these approximations reduce the computation time and

memory requirements significantly. The approximations are

controlled by a single energy threshold, and in all studied cases

it is easily possible to reduce the error to less than 1 kJ mol−1.

This is essential for the accuracy of future PNO-LCCSD(T)-

F12 calculations on large chemical systems.

This work has been funded by the ERC Advanced Grant

No. 320723 (ASES).
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