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Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size

and near-inverse-linear scaling in the number of processors
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Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

We propose to construct electron correlation methods that are scalable in both molecule size and aggregated

parallel computational power, in the sense that the total elapsed time of a calculation becomes nearly inde-

pendent of the molecular size when the number of processors grows linearly with the molecular size. This is

shown to be possible by exploiting a combination of local approximations and parallel algorithms. The con-

cept is demonstrated with a linear scaling PNO-LMP2 (pair natural orbital local second-order Møller-Plesset

perturbation theory) method. In this method, both the wave function manifold and the integrals are transformed

incrementally from projected atomic orbitals (PAOs) first to orbital specific virtuals (OSVs), and finally to pair

natural orbitals (PNOs), which allow for minimum domain sizes and fine-grained accuracy control using very

few parameters. A parallel algorithm design is discussed, which is efficient for both small and large molecules,

and numbers of processors, although true inverse-linear scaling with compute power is not yet reached in all

cases. Initial applications to reactions involving large molecules reveal surprisingly large effects of dispersion

energy contributions, as well as large intramolecular basis set superposition errors (BSSE) in canonical MP2

calculations. In order to account for the dispersion effects, the usual selection of PNOs on the basis of natural

occupation numbers turns out to be insufficient, and a new energy based criterion is proposed. If explicitly cor-

related (F12) terms are included, fast convergence to the MP2 complete basis set (CBS) limit is achieved. For

the studied reactions, the PNO-LMP2-F12 results deviate from the canonical MP2/CBS and MP2-F12 values

by less then 1 kJ mol−1, using triple-ζ (VTZ-F12) basis sets.

I. INTRODUCTION

Despite the enormous success of density functional the-

ory, accurate wave function methods are highly desirable in

computational chemistry. However, due to the steep scaling

of the computational resources (CPU-time, memory, disk

space) with the molecular size, conventional wave function

methods such as coupled-cluster CCSD(T) (coupled-cluster

with single and double excitations and a perturbative treat-

ment of triple excitations) can be applied only to rather small

systems. The CPU-time of CCSD(T) scales as O(N 7),
and even for the simplest electron correlation method, MP2

(second-order Møller-Plesset perturbation theory), it scales

as O(N 5), where N is a measure of the molecular size

(e.g. the number of electrons). This causes a “scaling wall”

that can only slightly be moved towards larger molecular

sizes by parallelization, even with the largest supercomput-

ers. Another problem of the CCSD(T) method is the slow

convergence of the correlation energy with the basis set size.

Very large basis sets are needed to obtain converged results,

and this makes high-accuracy electronic structure calcula-

tions extremely expensive.

During the last decade enormous progress has been made

to overcome these problems. The scaling problem can be

alleviated by exploiting the short-range character of elec-

tron correlation using local orbitals,1–44 and the basis set

problem can be overcome by explicitly correlated (F12)

methods.45–78 Particularly interesting is the combination of

both approaches, since it has been found that the F12 con-

tributions not only reduce the basis set error, but also much

improve the accuracy of local approximations.23,71,74,75

Nevertheless, one remaining problem is that most of the

existing programs are not well suited to high-performance

computing platforms. Even in methods scaling linearly in

molecular size, the amount of data, in particular the number

of two-electron integrals, may become enormous in calcula-

tions for large molecules. To our knowledge, in all current

methods beyond MP2 these data are stored on disk and must

then be read and processed in each iteration. This leads to

an I/O bottleneck preventing efficient parallelization of these

methods, and the most powerful available local methods are

therefore only moderately parallel18,40–43 and suitable only

for a single or very few compute nodes. However, an elec-

tron correlation methods’s range of applicability would be

massively increased if it would scale linearly in molecule

size and and inverse-linearly in aggregated parallel compu-

tational power at the same time. We will call such methods

scalable. For example, due to its O(N 7) size scaling, even

if perfectly paralellized, a canonical CCSD(T) calculation

can only treat 10% larger molecules if the computational re-

sources are doubled. But with a scalable method, de facto

any molecular size can be tackled by increasing computing

power.

Unfortunately, achieving true scalability by simply mod-

ifying the existing codes would be difficult. We have there-

fore started to write a new generation of local correlation

programs from scratch, and the current paper describes the

first step, namely PNO-LMP2. All parts of the program are

parallelized, and all large data structures are distributed over

the processors and compute nodes. Furthermore, commu-

nication between the processes is minimized and I/O oper-

ations in the integral transformations and iterations are en-

tirely avoided. The new methods are based on a combination

of know-how from our previous developments of PAO- and

OSV-based LCCSD methods with the ideas of Neese and co-

workers37–43 regarding the use of PNOs. The use of PNOs

is essential, since this allows an enormous reduction of the

data size and CPU time. This makes it possible to keep all

data in memory and thus avoid I/O bottlenecks in the par-

allel execution. We also include explicitly correlated (F12)

terms, but a scalable implementation is still under develop-

ment and will be described elsewhere.

This paper is organized as follows: in section II we briefly

summarize relevant previous work. In section III we present

the basic theory. Subsequently, we outline how scalability

can be realized and describe details of the local approxima-

tions in our present program, such as domain selections (sec-

tion IV). In section V we outline the linear-scaling integral

evaluation using local density fitting techniques. Our paral-

lelization model is described in section VI. The treatment

of explicitly correlated terms is summarized in VII. In sec-

tion VIII we will present benchmarks for the efficiency of
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our method, as well as for the accuracy of correlation and

reaction energies. A short summary closes the paper.

Our method involves a number of different orbital spaces,

and for the sake of clarity the abbreviations and index no-

tation used in this paper are summarized in Table I. We

assume that the initial occupied molecular orbitals |i〉 are

localized, while the initial virtual orbitals |a〉 are canonical.

In this paper we exclusively consider the closed-shell theory.

II. BACKGROUND

The field of local correlation methods came to live via the

pioneering work of Pulay in 1983.1–5 Over the years many

other local correlation approaches26–44,79–87 have been pro-

posed, including methods for excited states88–90 and peri-

odic systems,91–94 but only few of these have been devel-

oped up to the CCSD(T) level and have reached the produc-

tion stage. A review of all methods is beyond the scope of

the current paper. Here we only briefly mention those meth-

ods that are particularly relevant for the current work.

PAO-based local correlation methods have been devel-

oped in our group and by Schütz et al.6–25 up to LCCSD(T)

and even higher levels,13,42,43 and for all these methods lin-

ear scaling of the computational cost with system size has

been achieved. Further progress was made by the develop-

ment of local density fitting techniques15–18 for the efficient

calculation and transformation of the required two-electron

integrals. More recently, the extension by explicitly cor-

related terms71,74,87,95,96 [LCCSD(T)-F12] has significantly

improved the accuracy of these methods, and sub-kcal accu-

racy has been achieved, e.g. for reaction energies and bar-

rier heights in enzymes.95 Unfortunately, the PAO-based lo-

cal correlation methods suffer from the fact that rather large

PAO domains are needed to obtain fully converged results;

a consistent and balanced selection of these domains for dif-

ferent molecular structures turned out to be a difficult prob-

lem. The number of integrals in the PAO basis needed for

LCCSD(T) calculation scales with the fourth power of the

domain sizes, and despite linear scaling this can cause se-

vere memory and I/O bottlenecks.

This problem has been partly overcome by Neese and

co-workers,37–43 who proposed to use pair natural orbitals

(PNOs)97–101 instead of PAOs to span the virtual space. The

PNO domains can be chosen in a fine-grained way, based on

the pair natural occupation numbers. PNOs are the optimum

orbitals in the sense that the correlation energy converges

very quickly with the number of PNOs per pair. Typically,

only 50-70 PNOs per pair are needed to recover about 99.8%

TABLE I: Index notation used for different orbital spaces. Unless

otherwise noted, the orbitals are assumed to be orthonormal and

pseudo-canonical (see text). The corresponding non-orthogonal or-

bitals are denoted by a tilde.

orbital space indices

Localized occupied orbitals (LMOs) i, j

Canonical virtual orbitals (VMOs) a,b

Projected atomic orbitals (PAOs) r,s

Orbital specific virtuals (OSVs) ri,si

OSV pair domains ri j,si j

Pair natural orbitals (PNOs) pi j,qi j,ui j,vi j

of the correlation energy (even fewer PNOs are sufficient if

F12 terms are included). However, the PNOs are different

for each pair, and the total number of required PNOs in large

molecules may become huge (105 or more). For a long time

it was therefore believed that this prevents their use in local

methods, since the integral transformations seemed impos-

sible. However, Neese et al. demonstrated that this problem

can be overcome using local density fitting approaches, and

they recently implemented impressive PNO based methods

up to the level of LCCSD(T).42,43 Following the ideas of

Neese and coworkers, a number of other PNO-based local

methods have also been developed in recent years.79–82,88–90

A related approach is to use orbital-specific virtuals

(OSVs),102–105 where one set of virtual orbitals is used for

each LMO. The OSVs are identical to the PNOs for the di-

agonal pairs (i.e. those which describe the correlation of

two electrons in the same spatial orbital). As compared to

the PNO approach this strongly reduces the total number

of virtual orbitals, but still keeps the advantage of a fine-

grained domain selection. OSV-based local methods have

also been implemented up to the level of LCCSD(T).103,105

It turned out, however, that the OSV pair domains (which

are the union of the OSV domains for two orbitals) must be

2-4 times larger than the PNO domains, and in the end the

efficiency of both methods appears to be quite comparable.

In the previously described methods, local approxima-

tions are introduced, but the full system wave function is still

explicitly constructed. A conceptionally different class of

methods treats the correlation problem in overlapping frag-

ments of the molecule independently (fragmentation,106–116

and incremental methods117–121). The various approaches

differ in the way in which the fragments are defined and the

total correlation energy is assembled. They have in com-

mon, however, that for each fragment the corresponding

subset of orbitals is canonicalized, so that standard meth-

ods such as CCSD(T) can be used. The advantage of such

methods is their simplicity. Since each fragment is treated

independently of all others, “embarrassingly” parallel im-

plementations are possible, and the methods are in principle

scalable, i.e. the size of the molecules that can be treated

increases linearly with the available number of processors.

However, these methods have three essential disadvantages:

first, the fragments must strongly overlap, and this causes an

enormous amount of quasi-redundant computations. Sec-

ondly, in order to obtain converged results, the fragments

must be rather large, and it may be difficult and very ex-

pensive to treat them with canonical methods (this could of

course be overcome by using a local method for each frag-

ment). Third, the fragments may not always be simple to

define, in particular in strongly conjugated systems. Over-

all, these methods are by construction much more expensive

than efficient local correlation methods.

The essential difference of the current work to fragmen-

tation methods is that only the data used by the different

groups are overlapping, but redundant calculations of pair

residuals and integrals are avoided. Furthermore, the calcu-

lation time for each pair or group is very much smaller than

in a canonical fragment calculation. The price to pay is that

at the end of each iteration the processes must be synchro-

nized, and the updated amplitudes must be communicated

between the groups. Thus, optimized load balancing and

communication strategies are necessary.
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III. LOCAL DESCRIPTION OF ELECTRON

CORRELATION

A. Local occupied orbitals

The localized occupied molecular orbitals (LMOs) |i〉 can

in principle be obtained by any localization scheme, e.g.,

Boys122 or Pipek-Mezey123 (PM) localization; also natural

localized molecular orbitals (NLMOs) can be used.21 In the

current work we use the recently introduced intrinsic bond

orbitals (IBOs).124 IBOs are based on a molecule-intrinsic

minimal basis derived from free-atom atomic orbitals.124–127

They resemble PM orbitals, but are insensitive to basis set

variations; in particular, the commonly encountered artifacts

of PM orbitals with diffuse basis sets are absent.124,127,128

Additionally, the IBO construction yields stable orbital par-

tial charges which can be used for defining domains (see

section IV B). Similar localization schemes were also put

forward by Lehtola and Jónsson128 and West et al.126

The construction of IBOs is simple and efficient.124 Even

though our current implementation scales cubically with

molecular size, the time to generate the IBOs is found to

be short as compared to a PNO-LMP2 calculation, even

for cases with more than 9000 basis functions (c.f. section

VIII B). Core orbitals are not correlated throughout the cur-

rent work and therefore excluded from the localization.

B. MP2 with canonical and local occupied orbitals

The MP2 correlation energy can be split into contribu-

tions Ei j associated with individual pairs of occupied or-

bitals i, j:

Ecorr = ∑
i≥ j

(2− δi j)Ei j, (1)

Ei j = ∑
a,b

T̃
i j

ab
K

i j

ab
,

where K
i j

ab = (ai|b j), T̃
i j

ab = 2T
i j

ab −T
i j

ba, and T
i j

ab are the wave

function amplitudes. The T
i j

ab describe the correlation hole

associated with orbital pair |i j〉, and are determined by the

LMP2 amplitude equations. If the virtual orbitals are canon-

ical (i.e., diagonalize the Fock matrix such that fab = δabεb),

this equation reads

0 = K
i j
ab +(εa + εb − fii − f j j)T

i j
ab +G

i j
ab +G

ji
ba,

G
i j

ab = −∑
k 6=i

fikT
k j

ab . (2)

In general, Eq. (2) must be solved iteratively. But if canon-

ical occupied orbitals are used (i.e., fi j = δi jεi), it is solved

in closed form by

T
i j

ab = − (ai|b j)

εa + εb − fii − f j j

. (3)

The solution in Eq. (3) is also obtained in the local case if

the approximation Gi j ≈ 0 is employed; Following Riplinger

and Neese42, this will be denoted as semi-canonical approx-

imation in the following. The energies obtained with semi-

canonical amplitudes are too inaccurate for practical appli-

cations, but these amplitudes will be useful for generating

PNOs.

C. Local approximations in electron correlation

If all pairs i j are retained and Eq. (2) is solved exactly (in

the full space of virtual orbitals), then Eq. 1 obtains the ex-

act MP2 energy. However, large efficiency gains can be real-

ized by applying local approximations: Once local orbitals

i, j are employed, many pair energies Ei j can be neglected

completely, others can be approximated with multipole ap-

proximations, and in the retained Ei j, large portions of the

virtual space can be neglected.

This is best seen when writing the two-electron integrals

(ai|b j) in terms of charge distributions ρai(r) = φa(r)φi(r):

(ai|b j) =
∫

R3
dr1

∫

R3
dr2 ρai(r1)

1

r12

ρb j(r2). (4)

Let us assume i and j are local orbitals. If orbital i is far

from j, then also the local charge distribution ρai is far from

ρb j, and the integral can be approximated by a multipole

expansion.7,8,42 This is discussed in section III E. Since the

densities ρai(r) carry no charge, the lowest-order contribu-

tion is the dipole-dipole interaction, which decays with R−3
i j ,

where Ri j is the distance between the charge centers of the

two distributions. Consequently, in a local orbital basis, the

amplitudes and pair energies quickly decay with R−3
i j and

R−6
i j , respectively. This can be used to neglect distant pairs

i j in the pair approximation.

If the canonical orbitals a and b are replaced by local or-

bitals r, s, respectively, then the integral also decays quickly

(approximately exponentially) with the distance between

φr(r) and φi(r) or between φs(r) and φ j(r). This forms the

basis for domain approximations, which means for each pair

i j of occupied orbitals, excitations T
i j

rs are restricted to sub-

space of local virtual orbitals r,s that are spatially close to i

and j. Such subspaces (domains) are denoted as r,s ∈ [i j];
the choice and construction of the virtual spaces will be dis-

cussed in section III D.

In the most general case, we may assign completely in-

dependent sets of virtual orbitals {pi j} to different domains

[i j] (pi j ∈ [i j]). This is done in PNO case described next.

Assuming that virtual orbitals within a given domain [i j] are

orthogonal and pseudo-canonical (that is, they diagonalize

the Fock matrix in the respective domain), but that virtual

orbitals from different domains can be non-orthogonal, eq.

(2) turns into

Ri j
pq = Ki j

pq +(ε i j
p + ε i j

q − fii − f j j)T
i j

ab +Gi j
pq+G ji

qp,

Gi j
pq = −∑

k 6=i

fik ∑
u,v∈[k j]

〈pi j|uk j〉T k j
uv 〈vk j |qi j〉, (5)

where 〈pi j|uk j〉 is the overlap matrix between the virtual or-

bitals p in domain [i j] and u in domain [k j]. (If virtual or-

bitals within a pair domain are not orthogonal or not pseudo-

canonical, additional terms occur). For the optimized ampli-

tudes, the residual matrices R
i j
pq must vanish. With a given

set of amplitudes, the correlation energy is computed as

Ecorr = ∑
i≥ j

(2− δi j) ∑
p,q ∈ [i j]

(Ki j
pq +Ri j

pq)T̃
i j
pq. (6)

This expression corresponds to the Hylleraas functional and

depends only quadratically on the deviation of the ampli-

tudes from the fully optimized ones.
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D. Choice of virtual orbitals

The choice of the virtual orbitals is essential for a compact

local representation of the correlated wave function. In the

current work, projected atomic orbitals (PAOs), orbital spe-

cific virtuals (OSVs) and pair natural orbitals (PNOs) are

used in a hierarchical treatment. These three orbital types

have been discussed and compared in an earlier paper.23 In

order to introduce the notation and approximations used in

the current work, we will briefly review them here.

1. Projected atomic orbitals (PAOs)

The simplest choice of local virtual orbitals are projected

atomic orbitals (PAOs), as first proposed by Pulay1

|r〉 =
(

1−∑
i

|i〉〈i|
)

|rAO〉, (7)

where |rAO〉 are functions representing atomic orbitals, ex-

pressed in the orbital basis by a block-diagonal coefficient

matrix CAO. The use of actual atomic orbitals is helpful

(as opposed to, for example, directly using segmented ba-

sis sets) because they allow for a clear separation of core

orbitals, which should be eliminated from the virtual space.

The PAO expansion coefficients in terms of the AO basis are

P = 1−LL†SCAO, (8)

where L is the NAO × Nocc matrix of occupied orbitals

(LMOs), and S is the AO overlap matrix. We employ gen-

erally contracted basis sets, in which CAO can be taken as a

unit matrix. The PAOs are local, but not orthogonal. The full

set is linearly dependent. Non-redundant pseudo-canonical

PAO domains can be determined as described in more detail

in previous work6,19–21,129 and outlined in section IV B.

In principle, subsets of PAOs can be used directly to de-

fine the virtual spaces [i j] associated with i j pairs, and PAO-

based local correlation methods have been implemented up

to LCCSD(T) and even higher levels.6–25 It has been found

that with PAOs significant smaller domains are sufficient to

achieve a prescribed accuracy than with localized orthogo-

nal virtual MOs.23 However, in order to recover 99.8% of

the canonical correlation energy, still 500–800 PAOs per i j

pair may be needed (using triple-ζ basis sets). This number

increases linearly with the size of the AO basis. The domain

sizes can be further reduced by using pair-specific virtual

orbitals, as defined next.

2. Pair natural orbitals (PNOs)

PNOs37–43,97–101 are obtained by diagonalizing (approxi-

mate) external MP2 pair density matrices (i ≥ j)

D
i j

ab =
1

1+ δi j

[T̃i j† Ti j + T̃i jTi j†]ab. (9)

Various choices of approximate amplitudes Ti j will be dis-

cussed in section IV A. The diagonalization yields pair-

specific transformation matrices Qi j

[

Qi j†Di jQi j
]

pq
= ni j

p δpq. (10)

To each PNO |pi j〉=∑a |a〉Qi j
ap a natural occupation number

n
i j
p is associated, and this can be used to define the PNO pair

domains, cf. sec. IV C. PNOs for a given orbital pair i j are

orthonormal, but the PNOs of different pairs are mutually

non-orthogonal.

In the following it will be convenient to pseudo-

canonicalize the PNOs in each domain [i j]PNO by a further

unitary transformation Ui j, so that

|p̄i j〉 = ∑
q∈[i j]PNO

|qi j〉Uqp̄, (11)

[

Ui j†fi jUi j
]

p̄q̄
= ε

i j
p̄ δ p̄q̄, p̄, q̄ ∈ [i j]PNO, (12)

where [fi j]pq = 〈pi j| f̂ |qi j〉. This simplifies the iterative solu-

tion of the PNO-LMP2 equations but has no effect on the

results. The total transformation from canonical MOs to

pseudo-canonical PNOs for a pair i j is then given by

Q̄
i j
ap̄ = ∑

q∈[i j]

Qi j
aqU

i j
qp̄. (13)

For the sake of simplicity, we will in the following drop the

bar and always assume that the PNOs are pseudo-canonical.

The advantage of PNOs over PAOs is that the number of

amplitudes to be optimized is minimized. Typically, only

50-70 PNOs per pair are needed to recover about 99.8% of

the correlation energy, which is about an order of magnitude

less than in the PAO case (and, consequently, the number

of amplitudes and coupled equations are reduced by two or-

ders of magnitude). A further important advantage is that

this number grows much slower with the number of basis

functions than the number of PAOs.37 For distant pairs the

number of PNOs becomes even smaller and drops to zero if

the LMOs i and j are sufficiently far apart. These aspects are

illustrated in Fig. 1. The total number of significant PNOs

scales linearly with molecular size. Nevertheless, it can be-

come huge in large molecules, and therefore special tech-

niques are necessary to compute the necessary integrals in

the PNO basis, cf. section V.

3. Orbital specific virtuals (OSVs)

Orbital-specific virtuals (OSVs) have first been proposed

and used by Yang et al. for LMP2,102 and more recently
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FIG. 1: Sizes of PAO, OSV, and PNO pair domains [i j] in the Gly4

molecule, plotted over the distance Ri j between the charge cen-

troids of orbitals i and j. The VTZ-F12 basis is used.
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OSV-based methods have been implemented up to the level

of LCCSD(T)-F12.103,105 In this case one set of virtual or-

bitals is assigned to each LMO i. OSVs correspond to the

PNOs for diagonal pairs ii. Since Dii = TiiTii, the OSV

transformation matrices Qi := Qii can be obtained simply

by diagonalizing the symmetric matrices Tii, and the nat-

ural occupation numbers are related to the eigenvalues t ii
r

by nii
r = (t ii

r )
2. OSV orbital domains [i]OSV are selected us-

ing an occupation number threshold TOSV. Pair domains

[i j]OSV are then obtained by taking the union of the orbital

domains [i]OSV and [ j]OSV, followed by orthogonalization

and pseudo-canonicalization. The total number of OSVs

scales linearly with molecular size. It is much smaller than

the number of PNOs, but for a prescribed accuracy the OSV

pair domains must typically be larger by a factor of 3-4 than

the PNOs ones.23

E. Multipole approximations for distant pairs

In order to reduce the computation time and memory re-

quirements, the number of pairs that are included in the

PNO-LMP2 method should be minimized. The selection of

negligible pairs can be based on multipole approximations,

as previously described by Hetzer et al.7,8 using PAOs, and

recently also used by Riplinger and Neese42 using OSVs.

Here we adopt the latter approach. The OSVs |ri〉 and |s j〉
are assumed to be localized near the LMOs |i〉 and | j〉, re-

spectively, and their overlap is neglected. Furthermore, only

the integrals (rii|s j j) are kept, where ri is close to i and s j

close to j. All other integrals, such as the exchange-type

integrals (r ji|si j) are neglected. The simplest dipole-dipole

approximation for the remaining integrals then is

(rii|s j j) =

√
2

(Ri j)3

[

〈i|r|ri〉 · 〈 j|r|s j〉
]

. (14)

This yields for the distant pair energies42

EOSV-DIP
i j =− 8

(Ri j)6 ∑
r∈[i]OSV

∑
s∈[ j]OSV

[

〈i|r|ri〉 · 〈 j|r|s j〉
]2

ε i
r + ε

j
s − fii − f j j

,

(15)

where Ri j is the distance between the charge centers of |i〉
and | j〉. In the following this will be denoted as DIP(SC)-

approximation. These pair energies can be used to se-

lect the distant pairs and to estimate their long-range cor-

relation contribution. As pointed out by Riplinger and

Neese,42 this approximation is computationally very inex-

pensive, even for large systems. The integrals are computed

exactly only for pairs that have energies larger than a thresh-

old Tdist, as in the work of Riplinger and Neese. The de-

fault value is Tdist = 10−6. Alternatively, the LMP2 equa-

tions can be solved using all pairs, where either exact in-

tegrals (rii|s j j) [NOEXCH approximation] or approximate

integrals [DIP(OPT) approximation] are employed. In both

cases, all other integral types are neglected. The perfor-

mance of these three approximations will be compared in

section VIII.

The earlier work of Hetzer et al.7 has shown that higher-

order multipole contributions are non-negligible. Typically,

the dipole-dipole approximation underestimates long-range

pair energies by up to 30%. Including higher-order terms

improves the accuracy, but also leads to stronger divergence

for small Ri j. The optimum compromise recommended in

that work is p = 3, where p is the highest multipole order

l involved, i.e. the above dipole-dipole approximation cor-

responds to p = 1, and the contributions to the integrals de-

crease with (Ri j)
−(l+l′+1)). For more details see Ref. 7.

IV. IMPLEMENTATION OF LOCAL APPROXIMATIONS

A. Linear scaling PNO generation

The CPU time for generating the PNOs from canonical or-

bitals as described above (section III D 2) scales as O(N 5).
This is true both for the evaluation of the integrals (ai|b j)
needed in eq. (3), as well as for the diagonalization step in

eq. (10). Even though it has been argued that the O(N 5)
scaling is no problem for medium size molecules (up to 50-

100 atoms),37,38 it leads to serious bottlenecks in calcula-

tions for larger molecules.

A partial remedy of these problems is to neglect or ap-

proximate from the very beginning distant pairs that con-

tribute negligibly to the correlation energy. This reduces the

scaling from O(N 5) to O(N 4). The selection of the ne-

glected very distant pairs can be based on multipole approxi-

mations, cf. section III E. The generation of OSVs from am-

plitudes in the canonical basis also scales as O(N 4), though

with a much smaller pre-factor than for PNOs.

In order to combine the advantages of OSVs and PNOs,

we have previously proposed a hybrid method,23 in which

the PNOs are generated using OSV amplitudes. This signif-

icantly reduces the cost for computing the PNOs. The gen-

eration of PNOs from OSV amplitudes scales linearly if dis-

tant pairs are neglected or treated by multipole approxima-

tions. Shortly after, the same idea has also been reported by

Hättig et al.44 Very recently, Riplinger and Neese presented

a method in which the PNOs are generated from amplitudes

in the PAO basis (using pseudo-canonical PAO domains),

which leads to linear scaling as well.42 We also implemented

this method. This will be denoted PAO(SC) approach.

Our current method is closely related to the approach of

Riplinger and Neese but introduces an intermediate step in

the OSV basis. As will be shown below this reduces the cost

for generating the PNOs by about one order of magnitude.

First, PAO orbital domains are created as described in sec-

tion IV B. The PAOs in each domain are orthogonalized and

canonicalized, similar as described above for PNOs. Initial

semi-canonical amplitudes T ii
rs (r,s ∈ [i]PAO) are then created

using

T ii
rs = − Kii

rs

ε i
r + ε i

s − 2 fii

. (16)

These amplitudes matrices are diagonalized to yield OSVs,

and the OSV orbital domains [i]OSV are selected using an

occupation number threshold TOSV. These domains are typ-

ically by a factor of 2–4 times smaller than the initial PAO

domains. Next OSV pair domains [i j]OSV are generated by

taking the union of [i]OSV and [ j]OSV. The pseudo-canonical

orbitals in the resulting pair domains are denoted |r̄i j〉, with

associated orbital energies ε
i j
r . The transformation from the

non-orthogonal to the orthogonal pseudo-canonical OSV ba-

sis is represented by matrices Wi j,

|r̄i j〉= ∑
s∈[i j]OSV

|si j〉W i j
sr̄ . (17)
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Next, the integrals are evaluated in this basis. This is done

by first computing them in the PAO basis and then trans-

forming them to the pseudo-canonical OSV basis using the

transformation matrices Qi, Q j and Wi j. This can all be

done on the fly in (distributed) memory without any I/O.

More details will be give in section V.

A new set of semi-canonical amplitudes T
i j

rs is then gen-

erated according to eq. (16), using the appropriate integrals

(r̄i ji|s̄i j j) and orbital energies ε
i j
r . The final step is to gener-

ate the PNOs using the OSV amplitudes T
i j

rs . The integrals

(r̄i ji|s̄i j j) as well as the overlap integrals 〈ri j |si j〉 are trans-

formed from the OSV to the PNO basis accordingly.

Optionally, it is possible to solve the OSV-LMP2 equa-

tions iteratively to obtain the OSV amplitudes T
i j

rs required

in the PNO generation. This can be done similarly to eq. (5),

but it is much more expensive than solving the PNO-LMP2

equations. In section VIII E it will be demonstrated that the

loss of accuracy by using semi-canonical OSV amplitudes

to generate the PNOs [OSV(SC) approach], rather than fully

optimized ones [OSV(OPT) approach], is small. Therefore

semi-canonical OSV-LMP2 amplitudes are used by default.

As already mentioned, there are two advantages of using

the PAO-OSV-PNO hybrid approach: First, it is not neces-

sary to generate and store the huge transformation matrices

Qi j that transform from the PAO basis to PNOs. Secondly,

the construction and diagonalization of the external pair den-

sity matrices Di j is much faster in the OSV basis than in the

larger PAO basis. Since the OSV domains are typically a

factor of 2–4 smaller than the PAO ones, the speedup is 1–

2 orders of magnitude. As will be demonstrated later, the

loss of accuracy is negligible, provided a sufficiently small

threshold TOSV is employed.

B. PAO domain selection

The determination of appropriate initial PAO orbital do-

mains is a crucial for the accuracy of the method outlined

above. In contrast to the PAO-LMP2 and PAO-LCCSD

methods previously developed in our group, these domains

are now chosen to be so large that nearly the same accuracy

as with the full set of canonical orbitals is achieved.

Each PAO can be associated to the atomic center at which

the generating AO (basis function) has its origin. The PAO

domains [i]PAO always include all PAOs at a subset of cen-

ters, and therefore each domain is defined by a list of cen-

ters. To determine these center lists we use a two-step pro-

cedure. First, rather small primary domains are defined us-

ing intrinsic partial charges of IBOs.124 For each LMO all

atoms that have partial charges above a threshold TLMO are

included. This threshold has been chosen to be 0.2 for most

applications presented in this paper. Typically, the partial

charges are either significantly larger or smaller than this

value, and therefore these domains should be rather insen-

sitive to changes of the geometry and correspond closely to

chemical intuition of molecular bonds. In order to guarantee

smooth potentials the domains could also be frozen.20

In a second step, the primary domains are extended.

A straightforward method would be to simply reduce the

threshold TLMO, as proposed by Riplinger and Neese42 (but

using Löwdin partial charges that are much more basis set

dependent than the IBO charges). We found, however,

that even with IBO partial charges this procedure is not

fully satisfactory, since very small charges are not phys-

ically meaningful and may be scattered over many atoms

due to the orthogonalization tails. We therefore extend the

center lists by adding all next neighbors (IEXT=1), where

two atoms are considered to be neighbors (connected by a

bond) if their distance is less or equal 1.2 times the sum

of their atomic radii. This can be repeated using further

shells of neighboring atoms (IEXT=2, IEXT=3 etc.). Using

these extended domains the canonical limit can be systemat-

ically approached.19 Alternatively, distance criteria (REXT)

can also be used. This is sometimes advantageous if bonds

are stretched (e.g. at transition states) and not recognized as

a bond any more by the above criterion. The defaults in our

program is IEXT=2 and REXT=5 bohr. At least one of these

criteria must be fulfilled.

C. PNO domain selection

The conventional method37–44 to determine the PNO do-

mains is based on the occupation numbers n
i j
p , cf. eq. (10).

However, as will be demonstrated later, this simple method

may lead to too small domains for distant pairs and may

therefore significantly underestimate long-range dispersion

interactions (unless a very small threshold is used, which

then unnecessarily increases the domains for strong and

weak pairs). More balanced results are obtained if the PNO

domains are determined such that the PNO pair energies

closely reproduce the OSV ones for all pairs.

The first step is to generate for a pair i j the full set of

PNOs (i.e., as many as OSVs in the pair domain [i j]OSV)

by constructing and diagonalizing the pair density matrix

Di j in the pseudo-canonical OSV basis for the given pair.

Secondly, the integrals K
i j
rs and the amplitudes T

i j
rs are trans-

formed from the OSV into the PNO basis. This can be done

exactly because the OSV-PNO transformation is unitary and

can be inverted. One can then evaluate the pair correlation

energy in the PNO basis according to

Ei j = ∑
p,q∈[i j]

T̃ i j
pq(pi ji|qi j j). (18)

If the full set of PNOs is used, this yields exactly the OSV

pair energy. Reduced PNO domains [i j]PNO are obtained

by increasing the domain size one by one (starting with 1

in the order of decreasing natural occupation numbers) until

the approximate pair energy reproduces the exact OSV pair

energy within a certain threshold TPNO, i.e,

EPNO
i j /EOSV

i j ≥ TPNO (19)

TPNO is normally chosen to be 0.997-0.998, but it is possi-

ble to use smaller thresholds if F12 terms are included (cf.

section VIII). Furthermore, it is possible to combine the oc-

cupation number and energy criteria, by requiring that both

must be fulfilled (e.g. TPNO = 0.997 and TPNO OCC = 10−8).

This ensures that the domains of long-range pairs are suf-

ficiently large (by the energy criterion), and increases the

accuracy of the short-range pairs (by the occupation number

criterion). The procedure also works well if semi-canonical

OSV amplitudes are used, despite the fact that the absolute

values of the semi-canonical pair energies are not very accu-

rate. Since for diagonal pairs ii the OSVs and PNOs are

identical, the corresponding domains are kept unchanged

(this is the default; re-adjustment of the PNO domains ac-

cording to the above criterion is also possible in our pro-

gram).
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Typically, the resulting PNO domain sizes are by a factor

of 2-4 smaller than the OSV ones. As will be shown later,

even smaller PNO domains can be used in PNO-LMP2-

F12 calculations. Furthermore, the PNO domains become

smaller for distant pairs.

V. LOCAL DENSITY FITTING INTEGRAL

EVALUATION AND TRANSFORMATION

A. Evaluation of PNO-basis integrals

The most time consuming part of a PNO-LMP2 calcula-

tion is usually the evaluation of the transformed integrals

K
i j
pq = (pi ji|qi j j). We have succeeded in devising an al-

gorithm that shows excellent scalability with the molecular

size and the number of processors/cores,159 and this algo-

rithm is now described.

In our method, the integrals are first evaluated in the PAO

basis and finally transformed on the fly into the OSV basis.

We found that this is much more efficient that the direct eval-

uation of the integrals in the OSV basis, despite large PAO

domains. The reason is that that in large molecules there

may be many more OSVs than AOs and PAOs, which makes

the second transformation step not only very expensive, but

also leads to an exceedingly large number of 3-index inte-

grals. Linear scaling is achieved through local density fit-

ting (LDF)15,17,18,74,130 and using the sparsity of the LMO

and PAO expansion coefficients.

In general, density fitting involves the following steps:

(A|µ i) = ∑
ν

(A|µν)Lνi first half transf. (20)

(A|ri) = ∑
µ

(A|µ i)Pµr second half transf. (21)

(B̄|ri) = ∑
A∈[i j]fit

DB̄,A(A|ri) fitting (22)

(ri|s j) = ∑
B̄∈[i j]fit

(B̄|ri)(B̄|s j) assembly (23)

where µ ,ν refer to functions in the orbital basis, and A, B

are auxiliary fitting functions (DF basis). The integrals are

defined as (A|µν) =
∫

χµ(r1)χν(r1)r
−1
12 χA(r2)dr1dr2 with

r12 = |r1 − r2|. In principle, one could use D = J−1/2, with

JAB =
∫

χA(r1)r
−1
12 χB(r2)dr1dr2. However, it is more ef-

ficient (and numerically similarly stable) to instead use a

Cholesky decomposition of J:

J = GGT , (24)

D = G−1. (25)

In practice, Eq. (22) is then implemented by solving the tri-

angular linear equation system (BLAS3 routine dtrsm)

(A|ri) = ∑
B

GAB(B̄|ri) (26)

to obtain the transformed integrals (B̄|ri). Compared to the

standard density fitting procedure, where one first solves for

the fitting coefficients dA,ri = J−1
AB (B|ri), followed by the as-

sembly step (ri|s j) = dA,ri(A|s j) (summations over repeated

indices implied) the above procedure saves a factor of two

in both memory and CPU time (since eq. (26) can be solved

in place and G is a triangular matrix).

Linear scaling is achieved as follows: To each LMO i

a fitting domain [i]fit of auxiliary functions A is assigned.

Note that even though a given LMO i may have signifi-

cant Coulomb interactions with fitting functions A in the

entire molecule, only such functions must be included in

[i]fit which are necessary to fit the charge distributions |iµ),
which cannot spatially extend much beyond i itself. The

fitting domains are thus determined exactly as the PAO do-

mains (cf. section IV B). The parameters for extending the

fitting domains are denoted IDFDOM, RDFDOM (correspond-

ing to IEXT, REXT for the PAO domains). The default value

are IDFDOM=3 and RDFDOM=7 a0.

In the fitting and assembly steps [eqs. (22), (23)] the sum-

mations over A and B̄ are restricted to the union of the do-

mains [i]fit and [ j]fit. Therefore, for a given LMO i, the inte-

gral evaluation and transformation [eqs. (20), (21)] must in-

clude the united fitting domain A ∈ [i]ufit, which is the union

of [i]fit and all fitting domains [ j]fit of LMOs j that form pairs

with LMO i. Similarly, the range of PAOs in the second

half transformation must include the united PAO domains

r ∈ [i]uPAO. The sizes of all these domains are asymptot-

ically independent of the molecular size (provided distant

pairs are neglected). This leads to linear scaling in the fit-

ting and assembly steps. Note that in order to realize robust

density fitting (i.e., obtain errors in the final integrals (ri|s j)
which are only quadratic in the incompleteness of the fitting

basis [i]fit ∪ [ j]fit), the Cholesky decomposition and the fit-

ting step [Eq. (22)] must be carried out for each i j pair sep-

arately, since each pair uses a unique set of fitting functions

[i]fit ∪ [ j]fit. We even compute the required domain blocks

of J on the fly for each pair. As will be shown later, this is

sufficiently fast and avoids the storage of any quantities that

scale quadratically with the molecular size.

Since for a given i the number of r and A are indepen-

dent of the molecular size, and the integral (A|µ i) decays

exponentially with the distance between i and µ , the second

half transformation scales linearly, even without using ad-

ditional sparsity of the PAO coefficients Pµr. However, the

first half transformation still scales quadratically. This can

be reduced to linear by exploiting the sparsity of the LMO

coefficients Lµi, as described in section V B. In addition, the

sparsity of the PAO coefficients can be used, but this has a

smaller effect on the efficiency.

The algorithm is driven by center blocks of fitting func-

tions. For given block of fitting functions A one can deter-

mine which subsets of LMOs i and AOs ν contribute. The

remaining integrals (A|µν) are prescreened for pairs of AO

blocks. Since then ν is bound to A and µ to ν the number of

integrals to be evaluated scales linearly. The transformation

steps also scale linearly, as explained above.

B. Sparsity of LMO and PAO coefficients

As we have seen in the previous section, linear scaling

can only be achieved if the sparsity of the LMO coefficient

matrices is exploited in the integral transformation. Simply

neglecting small Lµi leads to rather large errors and is not

recommended. However, setting small Lµi = 0 and fitting

the resulting approximate LMO φ̃i to the original LMO φi by

minimizing
∫

[φi(r)− φ̃i(r)]
2dr yields much more accurate

results. The fitting procedure leads to a set of linear equa-

tions. This is equivalent to what is done in the Boughton-

Pulay procedure for domain selection,129 and similar ap-
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FIG. 2: Average lengths of the truncated LMOs (upper panel) and

PAOs (lower panel) for two different threshold T cut
LMO and T cut

PAO,

respectively, as a function of the chain length of polyglycine pep-

tides. The aVTZ basis set has been used, see section VIII for de-

tails.

proximations have been used in local fragmentation meth-

ods as well.108 PAOs can be truncated and fitted in a similar

way.

In detail, we use center based domains and screening al-

gorithms. LMO coefficients Lµi at a center C are set to zero

if

∑
µ∈C

L2
µi ≤ T cut

LMO, (27)

where the sum runs over all basis functions at center C. For

PAOs, blocks corresponding to center pairs are considered.

The coefficients Pµr are set to zero if for a pair of centers

C,D

∑
µ∈C

P2
µr ≤ T cut

PAO ∀r ∈ D. (28)

The errors caused by these approximations are sufficiently

small if T cut
LMO = 10−5 and T cut

PAO = 10−6.

Fig. 2 shows the average vector length of the truncated

LMOs (upper panel) and PAOs (lower panel) for glycine

polypeptide chains for two different thresholds (using the

aVTZ basis set, see section VIII). While from theoretical

arguments one would expect the vector length to reach a

constant, even in the long linear glycine chains studied here

we do not see this convergence. This is probably due to

both boundary effects and the long orthogonalization tails

caused by the diffuse basis functions. Further investigations

are required in this regard, in particular to see if more com-

plex criteria than (27) and (28), which take the basis function

overlap into account, can improve the situation. For (Gly)32

60.5 % and 73.1% of the PAO coefficients are neglected for

thresholds T cut
PAO of 10−5 and 10−6, respectively. The spar-

sity of the LMOs for the same values T cut
LMO is very similar.

The errors in the correlation energies are 0.12 mH and 0.013

mH for the two thresholds, respectively (the total correlation

energy without truncation is -24.640580 H).

VI. PARALLELIZATION

Once the LMOs and PAOs are available, our entire PNO-

LMP2 program scales nearly linearly with molecular size.

Except for the initial overlap matrix and Fock matrix in the

PAO basis, the memory requirements for all necessary quan-

tities (integrals, amplitudes, overlap matrices, transforma-

tion matrices) scale linearly with molecular size. The mem-

ory per pair which is needed in the integral transformation

and the LMP2 iterations becomes asymptotically indepen-

dent of the molecular size. If the number of cores grows

proportionally to the number of pairs, the memory require-

ments per core thus remain constant.

The OSV generation is parallelized over groups of LMOs

i, while in most other parts of the program parallelization

is over groups of pairs i j. To each processor is assigned a

group of residuals Ri j which it needs to compute. If dis-

tant pairs are neglected (or treated by multipole approxima-

tions, cf section III E), the number of amplitude matrices

that contribute to a given group of residuals Ri j [cf. eq. (5)]

becomes asymptotically independent of the molecular size.

The same is true for the PNO overlap matrices. Thus, the

CPU time and memory per residual becomes independent of

the molecular size, and a processor only requires a limited

amount of data (and thus communication) in order to com-

pute its assigned residuals. The more processors are avail-

able, the smaller the memory requirement per core (up to

the limit that each residual is computed on a different pro-

cessor).

At the end of each LMP2 iteration, the updated ampli-

tudes are written to a global array (GA),131 which can be

accessed from each processor independently (for details of

the GA software see http://hpc.pnl.gov/globalarrays/). The

GA is irregularly distributed over the processors, so that the

amplitude matrices of the pairs that are allocated to a given

processor are stored locally. Synchronization is necessary

only at the end of each iteration, after all updated amplitudes

have been written. At the beginning of the next iteration,

each processor reads the amplitude matrices which it needs

from the GA, except those that it owns and that are already

in its local memory. This yields a “scalable” algorithm, i.e.

the elapsed time, memory, and communication per proces-

sor become (nearly) independent of the molecular size if the

number of processors grows linearly with molecular size.

The most demanding part of the calculation is the eval-

uation and transformation of the two-electron integrals as

described in section V. We have implemented and tested

various parallelization strategies for the density fitting algo-

rithm. With local density fitting it is most efficient to paral-

lelize the integral evaluation and transformation steps over

blocks of fitting functions, and the fitting/assembly steps

over pairs of LMOs, using dynamic load balancing in both

cases. This requires, however, to communicate the trans-

formed integral blocks to other processors. As for the am-

plitudes in the iterations, the integrals are stored in a GA and

retrieved independently by the individual processors when

needed. The communication overhead caused by repeatedly
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accessing the same integral blocks is reduced by a buffering

scheme. The communication time is found to be insignif-

icant on a single node with shared memory. However, on

networked multimode systems the communication can be-

come a problem, depending on the network speed. While

with an Infiniband network the communication was never a

bottleneck, a simple Gbit network was found to be insuffi-

cient to achieve reasonable speedups.

A simpler, yet efficient parallelization method is to com-

pute groups of operators Ki j independently on different pro-

cessors, similar to what has been described above for the

LMP2 iterations and other steps. The groups of pairs should

be chosen such that the number of LMOs in each group is as

small as possible and the amount of work on each processor

is as similar as possible, since in this case the distribution on

the processors is static. We use the METIS graph partition-

ing technique132 to achieve this goal. This minimizes the

sizes of the united PAO and fitting domains and also min-

imizes the amount of redundant integral calculations. This

parallelization method avoids any communication between

processors. However, due to the unavoidable redundant inte-

gral evaluations on different processors as well as the static

parallelization scheme it is slower than the internally par-

allelized transformation program, provided a fast network

such as Infiniband is available. It may be advantageous to

use with a slow Gigabit network.

As a third alternative, we have also implemented an al-

gorithm that parallelizes the transformation and fitting steps

over groups of LMOs, accepting some redundant AO inte-

gral evaluations. This algorithm is used by default if local

fitting is disabled, since then the fitting step proceeds out-

side the assembly loop. Again a GA and a buffering system

is used to store and retrieve the transformed integrals.

VII. EXPLICIT CORRELATION

In the current work we use the so-called approximation

3A* with pair specific projectors, as described in detail in

several previous papers.71,74,75,95 It will therefore not be re-

peated here. Currently, the integrals are still computed using

previously developed programs. They allow for local den-

sity fitting and local resolution of the identity (RI) approx-

imations as described in Ref. 74 and scale almost linearly

with molecular size. However, even though the algorithms

are parallelized, they still involve a lot of disk I/O and are

therefore not scalable over several compute nodes. The de-

velopment of scalable algorithms similar to those described

in this work is in progress.

One technical point is worth mentioning: in approxima-

tion 3A* the evaluation of the F12 correction is uncou-

pled from the conventional amplitudes and therefore non-

iterative. However, the strong-orthogonality projector de-

pends on the chosen virtual orbitals and domains.71,75 But

since this affects only the contributions arising from the

term −∑ab∈[i j] |ab〉〈ab| in the projector, it is advantageous

to compute and store the energy contributions arising from

these and the other terms separately. In case that one is in-

terested both in the OSV-LMP2-F12 and PNO-LMP2-F12

energies, one only needs to re-evaluate the above-mentioned

projection terms in the PNO basis. The required integrals

such as F
i j
pq = 〈pq|F̂12|i j〉 can of course be obtained by trans-

formation from the OSV into the PNO basis. Therefore the

computation of the F12 correction for PNO-LMP2-F12 is

very cheap once the OSV-LMP2-F12 correction has been

computed.

Our method does not explicitly use the complementary

auxiliary basis set approach (CABS)52,133 since this makes it

difficult to employ local RI approximations. However, if the

union of the orbital basis and the RI basis is used to approx-

imate the RIs, exactly the same results as with the CABS

method are obtained. This can be done most conveniently

with the VnZ-F12 orbital basis sets134 along with the corre-

sponding OPTRI sets of Yousaf and Peterson.135 The latter

are constructed so that linear dependencies in the united ba-

sis sets are avoided. Recently, the construction of local RI

spaces from geminal spanning orbitals has been proposed,87

but this has not yet been considered here.

VIII. BENCHMARK CALCULATIONS

In this section we will demonstrate the accuracy and ef-

ficiency of our PNO-LMP2 method. First we will compare

different approaches for computing the PNOs and present

some timing data for the individual computational steps

(VIII A). In section VIII B and VIII C we will report bench-

mark calculations for glycine and alanine polypeptides that

demonstrate the scaling behavior of CPU-time and memory,

as well as the parallel efficiency. Subsequently, in section

VIII D we will demonstrate the dependence of computed

correlation energies and energy differences (reaction ener-

gies, barrier heights) on the various parameters that deter-

mine the virtual orbitals and domains in our approach. Fi-

nally, in section VIII F we will investigate long-range effects

and the distant pair approximations. The reactions studied

are shown in Fig. 3. The structures of all molecules can be

found in the supporting information.

We employed two different basis sets of triple-ζ qual-

ity: the first one is denoted aVTZ and consists of the aug-

cc-pVTZ basis sets136 for first-row atoms (C,N,O), aug-

cc-pV(T+d)Z basis137) for second-row atoms (Cl), and cc-

pVTZ138 for H-atoms. Secondly, the VTZ-F12 basis sets of

Peterson et al.134 were used, which are specially designed

for F12 calculations. All calculations were carried out us-

ing density fitting (DF) approximations for the evaluation

of the two-electron integrals. For computing the Fock ma-

trix an aug-cc-pVTZ/JKFIT basis was used that was derived

from Weigend’s cc-pVTZ/JKFIT basis139 by adding for each

angular momentum another shell of diffuse functions in an

even tempered manner. For all other integral types the aug-

cc-pVTZ/MP2FIT sets140 were used (the diffuse functions

on hydrogens were omitted in the calculations for polypep-

tides). For the resolution of the identity in the F12 cal-

culations the aug-cc-pVTZ/JKFIT were employed [without

using the complementary auxiliary basis set (CABS) ap-

proach]. We also carried out some tests with CABS and

optimized CABS basis sets135 and found that the differences

of the computed reaction energies are very small.

Typically, the aVTZ and VTZ-F12 basis set yields

better than aug-cc-pV5Z quality results for energy dif-

ferences when used in MP2-F1258,62 or CCSD(T)-F12

calculations.60,72,141,142 The diffuse functions were included

since they are known to be important to reach such accuracy.

Furthermore, we wish to demonstrate that low-order scaling

is also possible with diffuse basis sets.

The method is implemented in the development

version143 of the MOLPRO quantum chemistry package.144
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Reaction I

Reaction II

Reaction III

FIG. 3: The three benchmark reactions studied in this paper . For reactions I and II reaction energies are computed, for III the reaction

barrier height.

AuAN ATUC CSI

FIG. 4: Three-dimensional benchmark molecules

All benchmark calculations were performed on a compute

cluster with Xeon E5-2680 v2 @ 2.8 GHZ processors. Each

node has 2 processors with a total of 20 cores and 256 GB

of memory. Hyperthreading was not used. The nodes are

connected by an QDR-Infiniband network.

A. Analysis of computation times

We start with a comparison of timings for the individual

steps of PNO-LMP2 calculations, cf. Table II. The time re-

quired to compute the Fock matrix is not included, since it

is taken from the last Hartree-Fock (HF) iteration and not

recomputed in the PNO-LMP2 program. Furthermore, the

F12 terms are not considered since a scalable F12 program

is still under development (cf. Section VII). Throughout

this paper, only elapsed times will be shown (i.e., differ-

ences in wall-clock time including all communication and

I/O). The timings are shown for the androstendione precur-

sor molecule, i.e., the reactant of I. OSV(SC), OSV(OPT),

and PAO(SC) refer to the approaches for PNO generation

discussed in section IV A.

The total times for the OSV(SC) approach are dominated

by the integral evaluation and transformation (using local

density fitting). Since the integrals K
i j
rs are first computed

in the non-orthogonal PAO basis and only at the end trans-

formed to the pseudo-canonical OSV or PAO basis, the com-

putation times are similar in all 5 cases shown in table II.

They depend, of course, on the size of the initial PAO do-

mains and on the sizes of the local density fitting domains,

which are the same in all cases. The remaining computa-

tional steps, such as generation of the PNOs, evaluation of

the PNO overlap matrix, and solving the PNO-LMP2 equa-

tions take in the OSV(SC) approach very little time. The

threshold TOSV has only a rather weak effect on the overall

computation time. The additional effort for TOSV = 10−10

as compared to TOSV = 10−9 mainly stems from the diag-

onalizations and transformations required to determine the

pseudo-canonical OSV and PNO orbitals, which depend cu-

bically on the OSV pair domain sizes.

In the PAO(SC) approach (last column) the computation

times to generate the pseudo-canonical PAO and PNO pair

domains are strongly increased, since the average PAO pair

domain size is roughly twice as large as the OSV one, even
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for the very small threshold TOSV = 10−10. As expected, this

increases the computation times for the PNO generation by

an order of magnitude. Moreover, the memory requirements

are significantly larger. The increase of the memory with

increasing OSV (or PAO) domain size is due to the fact that

the number of integrals and amplitudes depend quadratically

on the domain sizes. In the OSV cases, the transformation

matrices Wi j grow linearly with the OSV and PNO domain

sizes. In the PAO(SC) case these matrices transform from

PAO to PNO and are approximately a factor of 2-3 larger.

Overall, the PAO(SC) calculations are about 2-3 times as

expensive as the OSV(SC) one for TOSV = 10−10, while the

results agree within 0.2-0.3 KJ mol−1 (cf. section VIII D).

The middle columns of Table II show the case that the

OSV-LMP2 equations are solved iteratively. Since the eval-

uation of the LMP2 residuals depends cubically on the do-

main sizes, the OSV-LMP2 iterations are dramatically more

expensive than the PNO-LMP2 ones. In the current case

the OSV domains are 4-5 times larger than the PNO ones,

and consequently the PNO iterations are 2 orders of mag-

nitude faster than the OSV ones. The same will be true for

the LCCSD iterations (currently under development). Even

though our program also allows for solving the PAO-LMP2

equations iteratively, this would be extremely expensive and

has therefore not been attempted. Note that in our previous

PAO based methods6,9,12,15,18 very much smaller PAO do-

mains were used, and even then the solution of the LMP2

equations was often rather expensive.

B. Demonstration of scaling with molecular size

In this section the scaling of elapsed times and memory

usage with the molecular size is demonstrated. In order to

reach the asymptotic scaling behavior quickly, linear glycine

polypeptide chains (Gly)n (up to n = 40) as well as alanine

polypeptides (Ala)n (up to n = 32) in the 310-helical con-

formation are used. Of course, these model systems are

quite unrealistic for real applications. Nevertheless they are

helpful for testing and detecting efficiency problems in the

algorithms and have often been used by other authors as

well. The alanine polypeptide helices are much more dense

than the linear glycine chains and contain more complex

intramolecular interactions (including hydrogen bonds). A

comparison of the two systems can therefore give some in-

sight about the effect of the secondary molecular structure

on the timings and memory requirements. Furthermore, in

section VIII C we will present some test calculations for the

3-dimensional molecules shown in Fig. 4.

The largest calculations for (Ala)32 and (Gly)40 were of

comparable size and included 323/283 atoms, 9674/9114

contracted basis functions (CGTOs), 21926/20726 auxil-

iary basis functions for the density fitting, 904/888 cor-

related electrons, 18113/8535 pairs optimized in LMP2,

and 997084/605961 PNOs for (Ala)32/(Gly)40, respectively.

Currently our Hartree-Fock program precludes us from test-

ing the PNO-LMP2 method for even larger molecules (vide

infra).

The LMOs were determined using the IBO method,124

and the domains were determined as described in section

IV B (using TLMO=0.15 and IEXT=2). The fitting domains

included all auxiliary functions at the primary atoms and 3

shells of neighboring atoms (IDFDOM=3). Distant pair ener-

gies were estimated using the dipole-dipole approximation
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FIG. 5: Total elapsed times of PNO-LMP2 calculations for glycine

polypeptides. Upper panel: comparison of canonical and local den-

sity fitted MP2 calculations, using 18 cores on one node. Lower

panel: PNO-LMP2 elapsed times on a larger scale (using 16 cores

on one node). Circles (black): total PNO-LMP2 times with LMO,

and PAO screening. Diamonds (blue): total PNO-LMP2 times

without LMO/PAO screening. Squares (red): times for OSV inte-

gral evaluation. Dashed line: times for non-linear parts (LMO and

PAO generation and fit; this part, which formally scales cubically,

is not included in the other graphs). All timings were obtained with

density fitting approximations.

(cf. section III E), and only pairs with pair energies |Ei j| >
Tdist = 10−6 where included in the iterative LMP2. The

LMO and PAO truncation thresholds (cf. section V B) were

set to T cut
LMO = 10−5 and T cut

PAO = 10−6. The OSV threshold

TOSV was 10−9 and the PNO threshold TPNO=0.998 (which

means a target of 99.8% of the OSV pair energies). The

PNO-LMP2 calculations yielded quite consistently 99.7%

of the corresponding canonical correlation energies (tested

up to (Gly)16). This percentage is mainly determined by the

PNO domain sizes and can be increased to 99.9 % using

tighter thresholds (see supporting information). The effect

of the domain sizes on absolute and relative energies will be

investigated in more detail in section VIII D.

Fig. 5 demonstrates the scaling of the elapsed times for

(Gly)n as a function of the peptide length. The upper panel

shows a comparison of canonical and local MP2 calcula-

tions, using 18 cores on a single node. The lower panel

shows a comparison of timings with and without using the

sparsity of the LMO and PAO coefficients; without this

screening quadratic scaling is expected in the integral eval-

uation and transformation. That the observed scaling expo-

nent of 1.7 is somewhat smaller than 2 is due to the contribu-

tion of other parts of the calculations, which scale linearly.

If the LMO and PAO screening is enabled, the scaling expo-

nent drops to 1.1 (determined from the (Gly)32 vs. (Gly)28

elapsed times, using the number of electrons as a measure of

the molecular size). The remaining small non-linear over-
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TABLE II: Dependence of pair domain sizes and timings for the androstendione precursur on the OSV and PNO thresholds. 20 cores on

one node were used in all cases.a

Amplitudes for PNO generation OSV(SC) OSV(OPT) PAO(SC)

OSV Threshold: 10−9 10−10 10−9 10−10

Average PAO pair domain size 795 795 795 795 795

Average OSV pair domain size 270 380 270 380 -

Average PNO pair domain size 77 85 79 87 93

Elapsed times in seconds:

OSV generationb 23 23 23 23 23

OSV or PAO pair domainsc,d 10 20 10 20 110

Integrals and transformationd 159 161 159 160 165

OSV Iterationse 1 2 619 1482 1

PNO generation 5 11 5 11 62

PNO S-matrix 13 26 13 27 122

PNO-LMP2 iterations f 17 21 9 11 33

Total 231 265 839 1736 524

Maximum memory per core (MW): 126 186 216 378 144

Maximum memory+GA space per core (MW): 131 190 227 401 358

a) Basis VTZ-F12 (2113 CGTOs), TLMO = 0.2, IEXT=2, TPNO = 0.997.

The PNO domains for diagonal pairs are determined by TOSV.

Number of pairs in LMP2: 2145; number of distant pairs (treated by

multipole approximation): 936; number of correlated electrons: 156.

b) Including evaluation of integrals Kii
rs and multipole treatment.

c) Including redundancy check and transformation to pseudo-canonical basis.

d) Using local fitting (IDFDOM=3).

e) Including evaluation of OSV S-matrix by transforming SPAO.

f) PNO-LMP2 with OSV(SC) or PAO(SC) amplitudes.: 5 iterations.

PNO-LMP2 with OSV(OPT) amplitudes: 2 iterations, starting with

projected OSV amplitudes. OSV-LMP2: 7 iterations.

head is mainly due to the problem that the LMO and PAO

AO-domains are not yet constant for these molecular sizes,

cf. Fig. 2. Furthermore, there are always some unavoid-

able parts, such as integral screening, that scale quadrati-

cally, though with a tiny prefactor. It should be noted that

the PAO screening reduces the overall times only for very

large molecules, since the fitting procedures also takes a

non-negligible amount of time. Therefore this screening

protocol is not enabled by default.

As shown in the lower panel of Fig. 5 the computation

of the integrals (ri|s j) (r,s ∈ [i j]OSV), required for the PNO

construction, is by far the most expensive part of the whole

calculation. For (Gly)32 it takes 63% of the total LMP2 time

(not including LMO and PAO calculation); further 17% are

used for computing the initial “diagonal” integrals Kii
rs (r,s ∈

[i]PAO), which are needed to compute the OSVs. Solving the

PNO-LMP2 residual equations (7 iterations) takes only 8%;

the remaining 12% are used for generating the OSVs and

PNOs, as well as the corresponding overlap matrices.

These PNO-LMP2 timings do not include the compu-

tation of the LMOs and PAOs and their screening (using

the method outlined in section V B). The time for these

parts, which formally scale cubically with molecular size,

is shown by the dashed line in Fig. 5. The observed scaling

is (for these molecular sizes) much lower than cubic. This

is caused by the parallel matrix multiplications used in these

steps, which become more efficient as the molecular size in-

creases.

Fig. 6 (upper panel) shows the dynamic memory (local

and global) allocated per core as a function of the molec-

ular size. In most cases the maximum amount of memory

is used in the integral transformation program. The global

array (GA) space scales linearly with molecular size. The

amount of local memory is slightly non-linear since for these

molecular sizes the number of non-zero LMO and PAO co-

efficients increases more than linearly with the molecular

size, cf. Fig. 2. The lower panel of the figure shows for

the (Gly)32 case (7306 basis functions) that the memory re-

quirements per core decrease almost linearly with the num-

ber of cores (for small numbers of cores). If a single node

with 20 cores is used, the program needs 150 MW (1.2 GB)

of dynamic memory (including GA space) per core, i.e. 24

GB overall. If 2 or more nodes are used (40 or more cores)

the total memory per node drops to less then 16 GB (this

does not include memory for the program code and a small

amount of static memory, e.g. for common blocks that hold

the geometry and basis set information).

In our current program the initial calculation of the LMOs

requires the replicated storage of 3 full matrices plus the

LMO vectors on each core. The HF program has a simi-

lar or even larger memory requirement, and this is still the

bottleneck in very large calculations. Clearly, this has to be

improved in the future, and this part will not be further dis-

cussed in the current paper.
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FIG. 6: Upper panel: Dynamic memory per core (triangles down

(red), GA-space per core (triangles up, blue), and total memory per

core (circles, black) needed for the PNO-LMP2 calculations for

glycine polypeptides (16 cores used). Lower panel: Total memory

per core as a function of the number of cores used. All data in

Megawords (MW); 1 MW=8 MByte (MB).

In the subsequent calculation of the PAOs and OSVs, and

the transformation of the overlap and Fock matrices into

these bases, at most two full matrices (SPAO and FPAO) are

currently needed in memory. For example, in the case of

(Gly)40 (9114 basis functions) these matrices require about

180 MW of memory. This amount is only exceeded by other

parts of the calculation if 16 or less cores are used. Therefore

the total memory requirement level off for larger numbers of

cores. It should be possible, however, to reduce the memory

requirements by only storing the domain blocks of SPAO and

FPAO that are actually needed on a given processor. Further

efforts are needed to remove this bottleneck.

The scaling of the elapsed times with molecular size for

the (Ala)n helices in shown in Fig. 7. Using the TZVPP ba-

sis a scaling exponent of about 1.1 is reached, while with the

more diffuse aVTZ basis it is slightly larger (1.2). This re-

flects the reduced sparsity of the LMO and PAO coefficients.

For (Ala)32 the LMO/PAO sparsities are (86.9%/78.1%) and

(66.6%/58.7%) for the TZVPP and aVTZ basis sets, re-

spectively. Other conclusions are similar as for the (Gly)n

molecules. However, as expected the elapsed times and

memory requirements are larger than for the (Gly)n chains.

This will be further discussed in the next section.

C. Demonstration of scaling with number of processors

Fig. 8 demonstrates the speedup with the number of cores

on a single node. The upper panel shows calculations for

(Gly)20 with a varying number of cores on one node rel-

ative to a calculation with 1 core. The observed speedup

of 18 with 20 cores is very satisfactory. This indicates that

8 12 16 20 24 28 32
Number of alanine units n

0

500

1000

1500

2000

2500

E
la

p
se

d
 t

im
e 

/ 
se

c

N
1.1

16 cores

TZVPP

aVTZ

(Ala)
n

N
1.2

FIG. 7: Total elapsed times of PNO-LMP2 calculations for ala-

nine helices (Ala)n. The aVTZ and TZVPP basis set were used for

comparison. The orbital localization and PNO generation is not

included in the timings. The calculation for (Ala)32 has 323 atoms

and 7259 and 9674 basis functions for the TZVPP and aVTZ basis

sets, respectively.

the memory bandwidth is less of a problem than it used to

be on older hardware. The lower panel demonstrates for

(Gly)40 that our program also scales quite well over mul-

tiple nodes with up to about 80-100 cores.This may seem

surprising, considering that even on a single node with 18

cores the Gly32 calculation takes only 6.5 minutes (Fig. 5).

Very similar speedups are achieved for (Ala)32, cf. Fig. 9.

With more cores the speedup curves becomes flatter, but this

is mainly a result our integral evaluation and transforma-

tion program being parallelized over center blocks of fitting

functions. Therefore, near-optimal speedups can only be ex-

pected as long as the number of centers is much larger than

the number of cores—but in (Gly)40 there are only 283 cen-

ters [of which 122 are H-atoms and 161 heavy atoms (C, N,

O)]. In the limiting case that the number of cores equals the

number of centers, the overall time of of this program step

will be determined by the center with the largest number of

fitting functions; the cores treating smaller atoms (e.g. hy-

drogens) will be partly idle. This explains why the slopes of

the speedup curves become smaller if many cores are used.

It should be possible to reduce this problem by splitting cen-

ter blocks of fitting functions, but has not been attempted so

far.

In order to test the performance of our program for sys-

tems that are of interest in real-life chemistry we carried

out some additional calculations for the molecules shown

in Fig. 4. The first is a gold(I)-aminonitrene complex

(Au C41H45N4P, in the following denoted AuA), taken from

Ref. 145 (but the structure has been re-optimized). The

ECP60MDF effective core potential for the inner 60 elec-

trons along with the aug-cc-pVTZ-PP basis set was used for

the gold atom. The second system is the reactant state of the

amido-thiourea catalyzed enantioselective imine hydrocya-

nation (C46H53N5O S, denoted here ATU) from Ref. 146.

The third test system is a binaphthyl-based chiral sulfon-

imide (C54H25O6F24P, denoted CSI) from Ref. 147, which

plays a role in a highly enantioselective organocatalysis.147

The optimized geometry of the structure denoted as “DSI 2”

in Ref. 147 has been used. All three structures can be found

in the supporting information. Theoretical studies of reac-

tions involving some of these molecules are in progress and

will be published elsewhere.
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FIG. 9: Speedup for (Ala)32 calculations relative to 16 cores on

one node with the number of processing cores and compute nodes.

The aVTZ basis set was used. The speedups with the TZVPP basis

set are very similar and not shown.

Here we are mainly interested in two questions: (i) How

large are the memory requirements for such rather dense and

3-dimensional systems; and (ii) do communication bottle-

necks occur. In table III some computational details and

the memory requirements for the 3 molecules as well as for

(Ala)32 are listed, using varying numbers of cores (this infor-

mation is independent of the number of nodes). The elapsed
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FIG. 10: Total elapsed times of PNO-LMP2 calculations as a func-

tion of the number of cores and nodes. Blue lines (circles): 10

cores per node; red lines (squares): 20 cores per node.

times for varying numbers of cores and nodes are shown in

Fig. 10.

The memory requirements decrease with increasing num-

ber of cores, though not quite linearly, due to the non-sparse

replicated storage of the orbital, Fock, and overlap matrices,

as already mentioned. With 80 cores, the calculation for

(Ala)32 requires less than 4 GB of memory per core (includ-

ing GA space) and needs about 10 minutes of elapsed time

(including orbital localization and PAO generation). This

may be compared to the (Gly)40 calculation, which only

takes about 3 minutes on 80 cores. The difference is due to

the more dense structure of the (Ala)32 helix. This increases

the number of non-distant pairs approximately by a factor of

2. The effect of the molecular structure is even more pro-

nounced when comparing the (Ala)32 and CSI calculations.

Both need nearly the same memory and time, even though

(Ala)32 has about 3 times as many atoms and twice as many

basis functions. The larger computational resources needed

for CSI are partly due to the dense 3-dimensional structure

of this very electron-rich molecule. Furthermore, it has sev-

eral aromatic rings (including 2 naphthyl groups), and the

domains in the conjugated π-electron systems are larger than

in more saturated molecules. The calculations for the other

two molecules took roughly half as long and need half as

much memory as the ones for CSI and (Ala)32.

In Fig. 10 it can be observed that the calculations with

10 cores per node are always somewhat faster than those

with 20 cores per node, if the total number of cores is the

same. Similarly, in Figs. 8 and 9 the calculations with 16

cores per node are mostly faster than those with 18 or 20

cores per node. This effect could be due to the limited mem-

ory bandwidth or reduced clock speeds if many cores of a

CPU are used (the machines run in Turbo mode, i.e. the

clock speed may depend on the CPU load). It is not easily

possible to measure the communication times directly, since

in many places of our program communication and compu-

tations are done concurrently. However, since the elapsed

times are even shorter when more nodes are used (i.e. more

communication procedes through the Infiniband network),

and also the speedups are very similar from 10 to 20 cores

on one node and from 20 to 40 cores on 2 and 4 nodes we

conclude that no significant communication bottlenecks oc-

cur in any of these calculations.

In summary, the results in this section show that rather
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TABLE III: Computational details and memory requirements of PNO-LMP2 calculations for (Ala)32 and the three molecules in Fig. 4

Correlated LMP2 Distant Max. memory per coreb

Molecule Basis Atoms CGTOs orbitals pairsa pairsb PNOsc 10 20 40 80

AuA VTZ-F12 92 3345 122 5128 2375 362712 649 431 280 207

ATU VTZ-F12 106 3772 137 5279 5174 324384 572 352 229 162

CSI VTZ-F12 110 4964 225 8201 17224 633079 1245 768 491 322

(Ala)32 aVTZ 323 9674 452 18113 84265 997084 1163 721 504 389

a) Number of pairs optimized in PNO-LMP2.

b) Number of distant pairs, treated by non-iterative multipole approximation, Tdist = 10−6 Eh.

b) Max. memory + GA space per core (in MW) for the number of cores given in the title line.

c) Total number of PNOs, TOSV = 10−9, TPNO = 0.998.

large PNO-LMP2 calculations can be carried out on a single

workstation with virtually no disk I/O. Significant further

speedups and a reduction of the memory requirements per

core are possible by using several nodes. The PNO-LMP2

times are completely negligible as compared to the preced-

ing Hartree-Fock calculation. Without using any local ap-

proximations the DF-HF for (Gly)40 took nearly 35 hours

using 18 cores [the calculation of the exchange matrix scales

as O(N4)]. It is possible, however, to reduce the scaling by

local fitting approximations; using the approach of Ref. 130

the CPU time is reduced by a factor of 15. Further improve-

ments, as for example recently described in Ref. 148, should

be possible, and the development of a scalable DF-HF im-

plementation is one of our next goals.

D. The effect of domain sizes on correlation, reaction and

activation energies

In this section we will present benchmark calculations for

three reactions involving medium-size molecules (up to 61

atoms, cf. Fig. 3). Reaction I is the last step in the synthe-

sis of androstendione. In reaction II, testosterone is deriva-

tized to make it more lipophilic for a longer retention time

in the body tissues. Reaction III is the hydroxylation of

p-hydroxybenzoate by the enzyme p-hydroxybenzoate hy-

droxylase, PHBH). Reactions I and II have been used for

benchmarks of previous PAO-LCCSD(T)-F12 methods in

Ref. 95, while reaction III has been studied using PAO-

LMP2 and PAO-LCCSD(T) methods in Refs. 149,150. In

the current paper reaction energies are computed for reac-

tions I and II, while for reaction III the reaction barrier

is computed for snapshot 1 of Ref. 150, using the same

QM/MM setup as in the previous work (electrostatic embed-

ding with 19233 lattice points). For reactions I and II envi-

ronment or solvent effects have not been considered, since

here we are merely interested in the convergence of the re-

action energies as a function of the PAO, OSV, and PNO

domain sizes.

Reactions I and II have been chosen since in both cases

the reactant and product molecules have quite different

sizes. This leads to interesting basis set and long-range cor-

relation effects. Reaction III is of interest since the corre-

lation effect on the barrier height is huge (≈ 100 kJ/mol).

Furthermore, the electronic structure at the transition state

is rather different than in the reactants. This has led in

the past to difficulties when treating the reaction with PAO-

LCCSD(T) methods, since the results were quite sensitive to

the choice of the domains, which differed at the two struc-

tures.

The previous work has shown that in all three cases the

MP2 results are in rather good agreement with LCCSD(T)

ones. It has also been found that the effect of the domain ap-

proximation is very similar for LMP2 and LCCSD. There-

fore, we believe that the PNO-LMP2 results presented here

will also be useful for estimating the reliability of PNO-

LCCSD(T) methods that are currently under development

in our group.

Table IV lists the canonical reference values using basis

sets of double-ζ and triple-ζ quality. All results were ob-

tained with density fitting, using the same auxiliary basis

sets for canonical and local calculations. The CABS singles

correction60,151 to the HF reference energies is included in

all F12 results. These corrections are smaller for the VTZ-

F12 basis sets than for the aVTZ ones, This is consistent

with the fact that the VTZ-F12 sets yield significantly bet-

ter Hartree-Fock energies than the aVTZ basis, since the

VTZ-F12 s and p basis sets correspond to the aug-cc-pVQZ

ones.134 Basis set extrapolations of the DF-MP2 correlation

energies were carried out using the usual n−3 formula152

with basis sets aVQZ and aV5Z. The Hartree-Fock ener-

gies were extrapolated using the Karton-Martin scheme.153

The MP2-F12 results with the aVTZ basis set agree within

less than 0.5 kJ mol−1 with the extrapolated CBS values.

The F12 results with the VTZ-F12 basis also agree with the

CBS estimates within 0.5 kJ mol−1, except for reaction II,

where the difference amounts to 1 kJ mol−1. Nevertheless,

all MP2-F12 results are always closer to the CBS values

than the MP2/aV5Z ones. This is remarkable, since the pure

MP2 results obtained with the same triple-ζ sets differ sig-

nificantly among each other and from the CBS limit.

In the case of reaction I the MP2/aVTZ reaction energy is

about 10 kJ mol−1 larger than the CBS limit, i.e. it strongly

overshoots the correlation effect. For the aug-cc-pVDZ ba-

sis (not shown in Table IV), this effect is even stronger, the

overshooting then amounts to 17 kJ mol−1. We believe that

this effect is mainly due to the intramolecular basis set su-

perposition error (BSSE). The BSSE favors the large precur-

sor molecule relative to the products, and therefore the MP2

reaction energies converge from above to the extrapolated

CBS value (see upper panel of Fig. 11). The opposite is

seen for the reaction II, where the product molecule is the

largest one, see (see lower panel of Fig. 11). As expected,

the basis set effects are larger for the correlation energies

than for the HF energies.

The remaining PNO-LMP2-F12 calculations in this sec-

tion were all carried out with the VTZ-F12 basis. No distant

pair approximations were applied (these will be investigated
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TABLE IV: Canonical reference values. All results are obtained with density fitting. For other details see text.

Method Reaction I Reaction II Reaction IIIc

VDZ-F12 VTZ-F12 aVTZ VDZ-F12 VTZ-F12 aVTZ VDZ-F12 VTZ-F12 aVTZ

HF -1.68 -4.94 -2.97 -26.28 -26.82 -27.16 170.73 173.47 173.78

CABSa -3.77 -0.83 -2.61 0.018 0.60 0.90 3.46 0.75 0.28

HF+CABS -5.45 -5.77 -5.58 -26.27 -26.22 -26.26 174.20 174.22 174.06

MP2 24.44 22.41 29.69 -24.23 -22.98 -24.97 64.12 67.85 67.90

MP2-F12 19.08 18.83 19.19 -19.75 -19.73 -18.92 71.01 70.28 70.72

HF/aVQZb -5.37 -26.20 173.80

HF/aV5Zb -5.83 -26.04 174.07

HF/CBS[45] -5.90 -26.01 174.11

MP2/aVQZb 22.42 -21.08 69.37

MP2/aV5Zb 20.48 -19.87 70.00

MP2/CBS[45] 18.85 -18.75 70.43

a) CABS Singles correction to the HF energy

b) Basis aug-cc-pVnZ, for Cl aug-cc-pV(n+d)Z, for hydrogen cc-pVnZ .

c) Barrier height excluding the MM correction of 11.72 kJ/mol

in the next section). Unless otherwise noted, the PNOs were

generated from fully converged OSV-LMP2 amplitudes.

Table V demonstrates the dependence of the results on the

choice of the PAO domains.
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FIG. 11: Basis set dependence of reaction energies for reactions I

(upper panel) and II (lower panel) using canonical and local meth-

ods. The aVnZ basis set has been used, see text. All calculations

employed density fitting.

As outlined in section IV B first primary PAO domains

are determined using a threshold TLMO for the IAO partial

charges. Secondly, these domains are extended by adding

all PAOs at IEXT shells of neighboring atoms. We have

carried out calculations using TLMO values of 0.2 and 0.1;

the domains obtained with these values differ mainly for the

aromatic π systems; with the larger value, for each π-bond

3 C-atoms are selected (all partial charges being larger than

0.3), while with the smaller value a 4th atom is added in each

case (partial charges close to 0.1). As can be seen, the effect

on the results is very small, and we have therefore set the de-

fault value to 0.2. All further calculations were carried out

with this value. In the case of reaction III some bonds are

significantly stretched at the transition state and not recog-

nized as ”bonds” any more by the program. The additional

distance criterion Rext = 5 a0 then had an effect of about -1

kJ mol−1 on the barrier height. This criterion does not af-

fect the other reactions, since for normal organic molecules

Rext = 5 a0 corresponds to IEXT=2.

Depending on the PAO domain extensions, the PNO-

LMP2 results show variations of up to nearly 4 KJ mol−1,

while the PNO-LMP2-F12 values are extremely stable. As

already noted, the large differences between MP2/VTZ-

F12 and MP2/CBS values is probably due to BSSE ef-

fects. It is well known from previous work that the BSSE

is strongly reduced by the domain approximation.154–158 In

fact, the PNO-LMP2/VTZ-F12 values for IEXT=2 are in

better agreement with the MP2/CBS ones than the canon-

ical MP2/VTZ-F12 results. Unfortunately, it is not possible

to separate the intramolecular BSSE from other correlation

effects, and therefore it remains uncertain whether the im-

provement is an error compensation or really due to the re-

duction of BSSE in the local case. Another problem is that

the BSSE is partly re-introduced when the PAO domains are

increased towards the full virtual space by increasing IEXT,

and there is no clear criterion which tells us where to stop.

The results (and probably the BSSE) also depend on the pa-

rameters TOSV and TPNO.

Fortunately, all these problems are largely avoided when

the F12 terms are included. These reduce the basis set in-
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TABLE V: Dependence of PNO-LMP2 and PNO-LMP2-F12 reaction energies on the PAO domain size.a AVD is the average PAO orbital

domain size of the largest molecule in each reaction. No distant pair approximations are applied.

PAO domain Reaction I Reaction II Reaction III

extension IEXT AVD LMP2 LMP2-F12b AVD LMP2 LMP2-F12b AVD LMP2 LMP2-F12b

Using TLMO = 0.2:

1 239 16.07 18.09 235 -20.58 -19.48 222 71.18 71.45

2 478 18.31 18.33 474 -20.83 -19.67 446 67.87 70.39

3 751 19.58 18.39 757 -21.24 -19.68 688 68.27 70.36

Using TLMO = 0.1:

1 243 15.88 18.09 238 -20.63 -19.49 225 72.86 72.07

2 479 18.29 18.34 476 -20.82 -19.74 446 68.23 70.56

3 753 19.60 18.39 758 -20.21 -19.74 688 68.42 70.43

full PAO domainsc 2006 21.62 18.25 1807 -22.53 -19.55 1855 68.35 70.38

canonical MP2d 22.41 18.83 -22.91 -19.73 67.85 70.28

a) Basis VTZ-F12, TOSV = 10−9, TPNO = 0.997

b) The F12 results contain the CABS singles correction, see Table IV.

c) The OSVs are generated from semi-canonical amplitudes T ii
ab, cf. eq. (3), without any PAO domain

approximation. The PNOs are generated using OSV amplitudes, exactly as in the other cases.

d) The values in the LMP2 and LMP2-F12 columns are the canonical DF-MP2 and DF-MP2-F12 results,

respectively, without any local approximations.

completeness errors and therefore also the BSSE. Further-

more, they reduce the domain error, which has been demon-

strated in detail earlier for absolute correlation energies as

well reaction energies of small71,75 and large74,95 molecules,

using PAO-LMP2 and PAO-LCCSD methods. The improve-

ment is due to the fact that the F12 contributions approx-

imately account for the correlation energy contributions of

the virtual orbitals outside the domains. (In the local case

the strong orthogonality projector is pair specific, see Refs.

71,74,75,95 for details). These findings are reinforced for

the PNO-LMP2-F12 method by the current results as well as

by those in Ref. 23. Using IEXT=2 convergence of the rela-

tive energies to less than 0.2 KJ mol−1 is reached, and even

with only IEXT=1 the errors amount less than 1 kJ mol−1.

The strongest dependence is seen for the barrier height of re-

action III, which is not surprising in view of the huge elec-

tron correlation effect (≈ 100 kJ mol−1).

In contrast to these results, a recent study of Pavošević

et al.87 found that the reduction of the domain error by F12

terms does not work well if PNOs are employed (using a

different F12 approximation). These inconsistent findings

are not yet resolved. In this context we have noticed that in

small molecules there can be cases where PNOs with near-

or exactly zero occupation numbers still have non-negligible

contributions to the F12 energy contribution (but not on the

conventional PNO-LMP2 energy). In such cases the ab-

solute F12 energies can depend rather sensitively on even

small PNO thresholds. In the present study this effect is vis-

ible in the HCl and propionyl chloride molecules (see sup-

porting information). The problem is apparently related to

(local) symmetry around a given atom, but its precise ori-

gin is so far not understood and needs further investigation.

Nevertheless, we again find that for relative energies the

F12 correction effectively corrects the domain error, even if

small molecules are involved where the symmetry problem

occurs (c.f. reaction II). This is also in line with the results

of Ref. 23, in which the reaction energies for 52 reactions of

smaller molecules were computed using a simulated PNO-

LCCSD-F12 program. The maximum and root mean square

deviations from the canonical CCSD-F12 results were only

1.4 and 0.5 kJ mol−1, respectively, using a PNO threshold

of 10−7.

The convergence of the relative PNO-LMP2-F12 ener-

gies on the thresholds TOSV and TPNO is shown in Table

VI. More detailed results, including those for PNO-LMP2,

can be found in the supporting information. The conver-

gence with TOSV is found to be rather slow, even with the

explicitly correlated methods. This problem has been noted

earlier,23 and it has probably been underestimated in the

original OSV papers.102,103 Reaction energy I is most sensi-

tive to this threshold. Reducing the threshold from 10−9 to

10−10 still affects the reaction energy for I by 0.3 kJ mol−1.

Nevertheless, we have set the default value to 10−9, which

should be accurate enough for most purposes. The average

OSV pair domain sizes for this threshold are 267, 263, and

267 for the three reactions, respectively.

Reaction I is also most sensitive to the threshold TPNO.

The important finding here is that using the occupation num-

ber threshold leads to much slower convergence of the reac-

tion energies with the PNO domain size than the alternative

method, where as many PNOs are selected as needed to re-

cover a certain fraction (e.g. 0.997) of the OSV pair energies

(cf. section IV C). This is particularly the case for the PNO-

LMP2 values without F12 correction (see supporting infor-

mation). The slow convergence seen with the occupation

number threshold is due to the fact that the PNO domains

become too small (or even zero) for long-range pairs, and

then significant dispersion contributions are missing. The

energy criterion fixes this problem, and the PNO-LMP2-F12

results are then rather insensitive to the choice of the thresh-

old. The default value for TPNO has been set to 0.997. The

average PNO domain sizes for this threshold are 55, 63, and

60 for reactions I-III, respectively.

That the improvement of the relative energies by the
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TABLE VI: Dependence of PNO-LMP2-F12 reaction energies on type of amplitudes used to compute the PNOs. The values for TPNO = 0

are the OSV-LMP2-F12 results.

Reaction I Reaction II Reaction III

TOSV TPNO OSV OSV(SC) PAO(SC) OSV OSV(SC) PAO(SC) OSV OSV(SC) PAO(SC)

10−9 10−7 18.03 16.78 17.21 -19.30 -19.22 -19.46 70.38 71.07 70.89

10−9 10−8 18.40 17.93 18.43 -19.78 -19.62 -19.88 69.87 70.41 70.21

10−9 10−9 18.53 18.32 18.83 -19.78 -19.74 -20.04 70.20 70.41 70.20

10−9 10−10 18.67 18.61 19.15 -19.49 -19.44 -19.75 70.42 70.46 70.24

10−9 0 18.47 -19.64 70.42

10−9 0.990 18.27 17.77 18.24 -19.67 -19.68 -19.98 69.73 70.36 70.12

10−9 0.995 18.30 17.87 18.38 -19.53 -19.60 -19.91 70.17 70.72 70.68

10−9 0.997 18.33 18.03 18.55 -19.67 -19.80 -20.09 70.39 70.43 70.65

10−9 0.999 18.35 18.27 18.86 -19.63 -19.73 -20.04 70.76 70.54 70.13

10−10 0.990 18.64 18.05 18.26 -19.87 -19.88 -19.99 69.57 70.24 70.12

10−10 0.995 18.65 18.19 18.40 -19.75 -19.81 -19.92 69.99 70.60 70.68

10−10 0.997 18.67 18.35 18.57 -19.89 -20.00 -20.10 70.25 70.28 70.65

10−10 0.999 18.76 18.62 18.87 -19.87 -19.95 -20.05 70.61 70.39 70.13

10−10 0 18.79 -19.86 70.28

MP2-F12c 18.83 -19.73 70.28

a) Basis VTZ-F12, IEXT=2; for reaction III in addition REXT=5 a0, see text.

b) All results contain the CABS singles correction, see Table IV.

c) Canonical MP2-F12 results.

F12 contributions is not a fortuitous error compensation is

demonstrated by the dependence of the absolute correla-

tion energies on the parameters that determine the domains.

In Table VII the percentages of correlation energy recov-

ered by the PNO-LMP2 and PNO-LMP2-F12 methods rel-

ative to the corresponding canonical values are listed for

the molecules of reaction I. Corresponding (and more com-

plete) data for all molecules can be found in the support-

ing information. As expected, the PNO-LMP2 correlation

energies converge towards the canonical limit with increas-

ing OSV and PNO domain sizes. Using the default pa-

rameters (IEXT=2, TOSV = 10−9, TPNO = 0.997) 99.6-99.8

% of the canonical correlation energies are recovered. The

PNO-LMP2-F12 correlation energies are much closer to the

canonical MP2-F12 ones and very insensitive to the domain

thresholds; for the default domains they deviate by no more

than 0.02 % from the canonical MP2-F12 values. Using

tighter thresholds this can be reduced to less than 0.01%. In

contrast to the PNO-LMP2 correlation energies they mostly

converge from above with increasing domain sizes, which is

due to the well-known slight overshooting of the F12/3*A

approximation.

It should be pointed out that the F12 calculation is not for

free. With our current program, which is not yet fully opti-

mized, a PNO-LMP2-F12 calculation takes 5-6 times more

time than a corresponding PNO-LMP2 calculation. For ex-

ample, the PNO-LMP2 and PNO-LMP2-F12 calculations

with the VTZ-F12 basis for the 4 molecules of the Testos-

terone reaction take 431 and 2154 sec, respectively (on a

single node using 18 cores, with local fitting and local RI

enabled, excluding Hartree-Fock). This is comparable to

an analogous PNO-LMP2 calculation using the VQZ-F12

basis, which takes 1587 sec and yields a reaction energy

of -19.32 kJ mol−1. Including the Hartree-Fock time the

LMP2/VQZ-F12 calculation is about 1.5 times as expensive

as the LMP2-F12/VTZ-F12 one (4817 sec vs. 3214 sec, re-

spectively).

In summary, using the chosen default parameters (TLMO =
0.2, IEXT=2, TOSV = 10−9, TPNO = 0.997, all computed en-

ergy differences agree with the canonical MP2-F12 values as

well as with the extrapolated MP2/CBS values within 1 kJ

mol−1 (0.25 kcal mol−1). The deviations from the canonical

MP2-F12 values can be reduced to less than 0.3 kJ mol−1 by

setting TOSV = 10−10 and TPNO = 0.998.

Finally, we note that even with the VDZ-F12 basis set re-

sults of excellent accuracy are obtained. Some results are

shown in Table VIII. In some of these calculations the en-

ergy criterion as well as the occupation number criterion

have been used for PNO domain selection, i.e. both must

be fulfilled simultaneously (cf. section IV C). This ensures

accurate results both for close and distant pairs. Even though

the LMP2-F12 correlation energies somewhat overshoot the

canonical MP2-F12 values, the relative energies are still

very accurate. The absolute truncation errors of the PNO-

LMP2-F12 values decrease with increasing PNO-domains;

for the tightest thresholds (0.997/1.d-9) the absolute trunca-

tion error of the PNO-LMP2-F12 correlation energy for the

androstendione precursor (relative to MP2-F12) amounts to

only 0.5 mH, while the PNO-LMP2 one (relative to MP2)

amounts to about 14 mH.

E. Effect of approximations in the PNO generation

As discussed in section IV A, various approximations

can be used in the generation of PNOs. The effect of us-

ing semi-canonical (non-iterative) OSV-LMP2 amplitudes

[OSV(SC)] rather than the converged ones [OSV(OPT)] to

generate the PNOs can be seen by comparing the first two

columns for each reaction in Table VI. This effect is rather
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TABLE VII: Absolute and relative correlation energies for the molecules in reaction I as a function of the domain selection parameters.

The VTZ-F12 is used. For the local methods the percentage relative to the corresponding canonical values is given. The canonical values

are in hartree (Eh). A value TLMO = 0.2 has been used in all cases. Fully optimized OSV-LMP2 amplitudes have been used to generate the

PNOs. The corresponding values obtained if semi-canonical OSV-LMP2 amplitudes are used to generate PNOs, as well as additional data

for these and other molecules, can be found in the supporting information.

PNO-LMP2 PNO-LMP2-F12

IEXT TOSV TPNO Precursor Androstendione o-Hydroyphenol Precursor Androstendione o-Hydroyphenol

Reference energiesa -1265.293819 -884.712689 -380.583011 -1265.311431 -884.724895 -380.588733

Canonical correlation energies:b -5.245171 -3.757905 -1.476848 -5.687985 -4.071195 -1.607420

1 10−9 0.997 99.6357 99.4098 99.4285 99.9932 100.0227 100.0093

2 10−9 0.997 99.7648 99.6586 99.6594 99.9995 100.0163 100.0082

3 10−9 0.997 99.7978 99.7483 99.7421 100.0001 100.0057 100.0011

2 10−10 0.995 99.6500 99.5705 99.5674 100.0268 100.0631 100.0515

2 10−10 0.997 99.7758 99.6875 99.6875 100.0027 100.0282 100.0199

2 10−10 0.999 99.9008 99.8025 99.8052 99.9831 100.0079 100.0004

2 10−10 10−7 99.7170 99.5281 99.5302 100.0178 100.0407 100.0310

2 10−10 10−8 99.9198 99.7920 99.7965 100.0106 100.0190 100.0159

2 10−10 10−9 99.9563 99.8479 99.8520 99.9927 100.0113 100.0063

2 10−10 10−10 99.9619 99.8583 99.8621 99.9909 100.0064 100.0032

a) The values under PNO-LMP2 are pure DF-HF energies; the ones under PNO-LMP2-F12 include the CABS singles correction.

b) The values under PNO-LMP2 are DF-MP2 correlation energies; the ones under PNO-LMP2-F12 include the F12 correction.

small and systematically decreases with increasing PNO do-

main sizes. In most cases the convergence with the PNO

threshold is somewhat faster when optimized OSV ampli-

tudes are used. This effect is most clearly seen for reaction

I. Using the default threshold TPNO = 0.997 the differences

are smaller or equal to 0.3 kJ mol−1, and we use the semi-

canonical methods as the default. As has been shown in sec-

tion VIII A, this strongly reduces the computational effort.

Results obtained with the PAO(SC) approach, in which

the OSV step is skipped, are also shown in Table VI. As ex-

pected, the PAO(SC) results converge somewhat faster than

the OSV(SC) ones towards the canonical results. The tiny

dependence on the threshold TOSV is due to the fact that in

our program the PNOs for the diagonal pairs (i.e. the OSVs)

are selected with this threshold.

F. Effect of long-range correlations and multipole

approximations on reaction energies

In this section we will demonstrate the effect of long-

range correlation effects on the reaction energies and inves-

tigate the effect of the dipole-dipole approximation for ap-

proximating the distant pair energies (cf. section III E). As

an example we will discuss reaction I; benchmark results

for all three reactions can be found in the supporting infor-

mation. Throughout this section the F12 corrections are in-

cluded, but these corrections are neglected for the distant

pairs.

Fig. 12 shows the effect of long-range correlation effects

on the reaction energy of I as a function of a distance param-

eter Rdist. The pair energies of pairs for which Ri j > Rdist are

either neglected or approximated. Here Ri j is the minimum

distance between any atom in the primary orbital domain [i]
from those in domain [ j] (using TLMO = 0.2 to select these

domains). Completely neglecting the long-range pairs has a

strong effect: for Rdist = 8 the error amounts to nearly 6 kJ

mol−1. Including the distant pairs but keeping only the (ex-

act) integrals (rii|s j j) in the LMP2 iterations almost elim-

inates the error beyond Rdist = 9 a0. Even for Rdist = 8 a0

the error is reduced to about 1 kJ mol−1. Also approximat-

ing these integrals by the dipole-dipole approximation has a

rather small effect. These results show that the dispersion

interaction, which are described by these integrals, plays a

dominant role. It stabilizes the large reactant molecule, and

therefore makes the reaction energy more positive. If the

distant pair energies are treated by the non-iterative dipole-

dipole [DIP(SC)] approximation, the errors are somewhat
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FIG. 12: Effect of long range correlation effects and dipole-dipole

approximations on the PNO-LMP2-F12 reaction energy I as a

function of the distance threshold Rdist (see text). The dashed line

is the result obtained with all pairs. Defaults have been used for all

other parameters (see footnote of Table IX).
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TABLE VIII: Reaction energies and correlation energies using

the VDZ-F12 basis set. The PNOs have been computed using

optimized OSV amplitudes. TLMO=0.2, IEXT=2, TOSV = 10−9,

TPNO = 0.997. T occ
PNO is an occupation number threshold for the

PNO selection. Where given, this be fulfilled in addition to the

energy threshold TPNO.

Method T occ
PNO Reaction I Reaction II Reaction III

Reaction energies (kJ mol−1):

PNO-LMP2 17.82 -20.01 63.91

PNO-LMP2 10−8 17.53 -19.95 63.70

PNO-LMP2 10−9 17.72 -20.00 63.58

MP2 24.44 -24.23 64.12

PNO-LMP2-F12 18.41 -19.34 71.29

PNO-LMP2-F12 10−8 18.86 -19.69 70.97

PNO-LMP2-F12 10−9 18.79 -19.50 71.19

MP2-F12 19.08 -19.75 71.01

MP2/CBS[45] 18.85 -18.75 70.43

Correlation energies:a

MP2 -4.709626 -4.085582 -5.248180

PNO-LM2 99.5297 99.5123 99.6060

PNO-LMP2 10−8 99.6841 99.6635 99.7710

PNO-LMP2 10−9 99.7038 99.6828 99.7882

MP2-F12 -5.699752 -4.937962 -6.399285

PNO-LMP2-F12 100.1326 100.1273 100.1163

PNO-LMP2-F12 10−8 100.0392 100.0387 100.0137

PNO-LMP2-F12 10−9 100.0086 100.0085 99.9910

a) For the largest molecules of I and II, and for the reactant of III.

MP2 and MP2-F12 values in Eh, PNO-LMP2 values in percent.

larger, but quickly converge to negligible values at long dis-

tances. For Rdist values of 8, 10, and 12 the additional errors

caused by the DIP(SC) treatment amount to 0.5, 0.2, and

0.1 kJ mol−1, respectively. The total error of the DIP(SC)

method for Rdist = 12 is only 0.1 kJ mol−1, while complete

neglect of the pairs beyond this distance causes an error of

0.9 kJ mol−1.

An alternative method to select the distant pairs is to use

their pair energies as a criterion. The pair energies are then

computed for all pairs for which the distance Ri j between

the charge centers of the two orbital domains is nonzero (or

above some minimum value), and then all pairs for which

Ei j < Tdist are selected as distant. Table IX shows the num-

ber of distant pairs (for the largest molecule of I, II, and

for the reactant of III) and the convergence of the reac-

tion energies with this threshold. The numbers of distant

pairs obtained with Tdist = 10−6 correspond to those for

Rdist = 11− 12 a0, and the errors with this threshold are be-

tween 0.2 and 0.4 kJ mol−1. Thus, this threshold appears

to be appropriate for most cases. A safer choice is 3 ·10−7,

but this reduces the number of distant pairs approximately

by a factor of 2 and therefore makes the calculations more

expensive.

TABLE IX: PNO-LMP2-F12 energy differences as a function of

the energy criterion Tdist for the selection of distant pairs. The

DIP(SC) approximationa has been used, other parameters are de-

fault valuesa.

Reaction I Reaction II Reaction III

Tdist Ndist ∆E Ndist ∆E Ndist ∆E

0 0 18.03 0 -19.80 0 70.43

1 ·10−7 201 18.03 209 -19.80 113 70.43

3 ·10−7 522 17.99 384 -19.78 432 70.45

1 ·10−6 941 17.90 634 -19.62 931 70.81

3 ·10−6 1301 17.34 891 -19.12 1438 72.14

a) TLMO = 0.2, IEXT=2, TOSV = 10−9, TPNO = 0.997

The PNOs were generated from OSV(SC) amplitudes.

IX. SUMMARY AND CONCLUSIONS

As a first step towards the development of new scalable

coupled-cluster methods we have demonstrated that almost

perfect linear scaling of the elapsed-time and memory re-

quirements with the molecular size can be achieved for

PNO-LMP2, without significant loss of accuracy as com-

pared to canonical MP2. If combined with explicitly cor-

related terms, we have shown that extrapolated MP2/CBS

limits for reaction energies or barrier heights can be repro-

duced by PNO-LMP2-F12 with triple-ζ basis sets within

less than 1 kJ mol−1 error. The accuracy of the method

can be controlled by very few parameters, and based on

extensive benchmark calculations reliable default values for

these have been established. It has been demonstrated that

long-range dispersion interactions can have a significant ef-

fect on reaction energies involving large molecules. These

long-range correlation effects can be well approximated by

multipole expansions.

Our new implementation is well parallelized, and good

speedups with 100 and more processing cores have been

achieved on a compute cluster with Infiniband network, even

for calculations that require only a few minutes of elapsed

time. Due to successive transformations of the canonical

virtual orbitals via PAOs and OSVs to PNOs, an enormous

reduction of the amount of data (integrals, amplitudes) is

achieved, which makes it possible to keep all data in the dis-

tributed memory. Disk I/O is entirely avoided, apart from

reading the LMOs and PAOs. This is essential for effi-

cient use of massively parallel machines. The memory re-

quirements also decrease almost linearly with the number of

processors used, which means the system size that can be

treated within a certain time and a fixed amount of memory

per processor increases almost linearly with the number of

processors. Currently this is still limited by the replicated

storage of the full overlap and Fock matrices in the PAO ba-

sis as well as non-perfect load balancing, but it should be

possible to eliminate these problems in the future.

The next steps will be the implementation of a scalable

F12 correction as well as an PNO-LCCSD program. At the

time of writing this paper, PNO-LCCD is already working,

using very similar techniques as presented here. With this

new program we have already been able to carry out cal-

culations for 3-dimensional molecules with over 100 atoms

and more than 2000 basis functions on one compute node in

less than 1 hour of elapsed time. The details and benchmarks

will be presented in a another publication.
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At least with our current program, the bottleneck in very

large calculations is the preceding Hartree-Fock calculation,

in particular the evaluation of the exchange part of the Fock

matrix. This applies both to CPU-time and memory. It was

shown previously130,148 that this problem can be alleviated

using local density fitting approximations. Several of the im-

proved techniques presented in this paper should be equally

applicable in Hartree-Fock, and the development of a scal-

able HF implementation is another important goal for the

near future.
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034106 (2007).
60 T. B. Adler, G. Knizia, and H.-J. Werner, J. Chem. Phys. 127,



22

221106 (2007).
61 D. P. Tew, W. Klopper, C. Neiss, and C. Hättig, Phys. Chem.

Chem. Phys. 9, 1921 (2007).
62 G. Knizia and H.-J. Werner, J. Chem. Phys. 128, 154103

(2008).
63 T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem.

Phys. 129, 071101 (2008).
64 T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, Phys.

Chem. Chem. Phys. 10, 3358 (2008).
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105 M. Schütz, J. Yang, G. K.-L. Chan, F. R. Manby, and H.-J.

Werner, J. Chem. Phys. 138, 054109 (2013).
106 D. G. Fedorov and K. Kitaura, J. Chem. Phys. 123, 134103

(2005).
107 T. F. Hughes, N. Flocke, and R. J. Bartlett, J. Phys. Chem. A

112, 5994 (2008).
108 W. Li, P. Piecuch, J. R. Gour, and S. Li, J. Chem. Phys. 131,

114109 (2009).
109 W. Li and P. Piecuch, J. Phys. Chem. A 114, 8644 (2010).
110 W. Li and P. Piecuch, J. Phys. Chem. A 114, 6721 (2010).
111 W. Li, Y. Guo, and S. Li, Phys. Chem. Chem. Phys. 14, 7854

(2012).
112 M. Ziółkowski, B. Jansı̀k, T. Kjærgaard, and P. Jørgensen, J.

Chem. Phys. 133, 014107 (2010).
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