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A new approach to determine local virtual space in correlated calculations is presented. It restricts the virtual
space in a pair-specific manner on the basis of a preceding approximate calculation adapting automatically
to the locality of the studied problem. The resulting pair system-inherent domains are considerably smaller
than the starting domains, without significant loss in the accuracy. Utilization of such domains speeds
up integral transformations and evaluations of the residual, and reduces memory requirements. The system-
inherent domains are especially suitable in cases which require high accuracy, e.g., in generation of pair-natural
orbitals, or for which standard domains are problematic, e.g., excited-state calculations.

I. INTRODUCTION

Wavefunction-based methods have various favorable
features, e.g., systematical improvableness, capturing of
subtle physical effects, etc. But these features come with
a price of evaluation and contraction of high dimensional
tensors that occur in the formalism, and the resulting
steep scaling of computational resources with the molec-
ular size. Fortunately the dynamical electron correlation
is a local phenomenon, and therefore in an appropriately
localized basis the tensors are sparse. This represents a
basis for various local correlation methods,1–34 which ap-
ply different local approximations to the tensors in order
to reduce the computational scaling. The local approxi-
mations apply to truncations of the pair list9,15,35–37 and
virtual space restrictions. In this contribution we focus
on the latter type of approximation.

There exist several approaches to determine the lo-
cal virtual basis. One of the first elaborate ways is
the Boughton-Pulay procedure38, which uses information
from the Hartree-Fock calculation, i.e., orbitals and par-
tial charges, in order to find important excitation centers
in the projected-atomic-orbital (PAO) virtual basis5,39–41

for a given localized occupied orbital. This procedure
was specifically designed for PAO-based methods and
is widely used in various implementations.9–16,42–47 An
alternative way is to use information from a correla-
tion method, e.g., a (approximate) second-order per-
turbation theory, to obtain an optimally compact ba-
sis for the higher order treatment. This approach
is used in methods based on the orbital-specific vir-
tuals (OSVs)23–25,48,49 and the pair-natural orbitals
(PNOs).18–22,50–54 It offers a scheme to construct a new
virtual basis, which is adapted to recover more corre-
lation energy using smaller number of orbitals. A big
advantage of these methods is a smooth approach to
the canonical results controlled by a single truncation
threshold. The most compact representation of the dou-
bles amplitudes is achieved with the PNO virtual space.
However, the integrals and overlap matrices can become
large, and an additional overhead of integral transfor-
mations and redundant calculations is introduced. The
PNO methods often employ PAOs in order to reduce the

cost of integral transformations, which triggered fresh de-
mand for optimal PAO pair domains.22,51–54

It is possible to use the information from the corre-
lated calculation to define truncations also in the PAO
space. However, because of the non-orthogonality of the
PAO space a straight-forward application of this type of
truncation to the PAO-based methods is problematic. A
simple approach of dividing pair-energy contributions ac-
cording to atomic centers and neglecting all contributions
below a certain threshold suffers from the well-known
problems of the Mulliken partial charges, i.e., the basis-
set (and in this case also starting-domains) dependence
and the resulting arbitrariness of small contributions.24,55

Although it is possible to use orthogonal localized virtual
orbitals56–59 instead of PAOs to circumvent this problem,
the PAO space itself has very nice properties, e.g., inex-
pensive integral transformations as shown in Paper I.60

An alternative solution is to use a completeness crite-
ria for PAO domains, as was demonstrated with Laplace
domains in the context of excited states17,61–64 where a
priori definition of domains using spatial criteria is not
appropriate. The resulting procedure corresponds to the
OSV procedure without definition of special orbitals.

In this paper we will demonstrate that one can deter-
mine the system-inherent domains in PAO space using
approximate doubles amplitudes in analogy to OSV and
PNO methods. Additionally we will address the prob-
lem of ordering PAO-centers which is not trivial because
of the non-orthogonality of the PAOs, and we will try
to further reduce the domain sizes and the basis set de-
pendency of the domains by using a finer grained PAO
space.

II. THEORY

A. Pair and orbital system-inherent domains

The first step in the definition of orbital system-
inherent (OSI) or pair system-inherent (PSI) domains is
the choice of the approximate amplitudes to represent
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the molecular system. Here we adopt the usual OSV or
PNO practice of using approximate zeroth-iteration local
MP2 amplitudes calculated using large starting domains,
i.e., amplitudes obtained in pseudo-canonical virtual ba-
sis and using only diagonal elements of the occupied Fock
matrix in the local basis,9
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with the approximate amplitudes (T̄ ), pair-specific
PAO-to-pseudo-canonical-virtuals transformation matri-
ces (W ), two-electron repulsion integrals (K), occupied
part of the Fock matrix (f), and virtual-orbital energies
in the pseudo-canonical basis (ǫ). Here and in the follow-
ing i, j, k and a, b, c denote localized occupied orbitals and
PAOs, respectively, and ā, b̄ denote the pseudo-canonical
virtual orbitals. The pseudo-canonical virtual basis is
domain specific, and in order to obtain the W matri-
ces for each pair two matrix-diagonalizations with the
pair-domain dimensions have to be performed.9 It has
been shown before that these amplitudes yield reason-
able PNOs and OSVs.22–24,51 However, it is also possible
to use doubles amplitudes obtained from a rough Laplace
integration,17 or any other doubles amplitudes.

For OSI domains only approximate doubles amplitudes
for diagonal pairs (T̄ ii

ab) are necessary, for PSI domains

one needs doubles amplitudes for all pairs (T̄ ij
ab). In the

following we will focus on PSI domains, but the formalism
is applicable to the OSI domains as well.

Having the amplitudes we are in the position to deter-
mine the PSI domains. For that we partition the virtual
space onto groups of PAOs, which we call grains. Ideally
grains should be sensibly small in order to exploit the
full potential of the locality in the system, and should be
reasonably separated in the real space or energetically.
On the other hand, the grains must not be too small,
otherwise the domain generation and handling of small
blocks in the calculations can become too expensive. On
the basis of a certain criterion, discussed below, we rank
the PAO grains according to their importance, and add
to the domains one after another until a completeness
criterion is satisfied.

The system-inherent domains allow for a different
blocking of the virtual space than the usual atom-wise
graining. This can reduce the size and basis-set depen-
dency of the domain sizes. As an example we have cho-
sen an electronic-subshell-wise graining, i.e., PAO space
is grained according to the s, p, d, etc. functions.

As in PNO case the PSI domains can be defined ac-
cording to energetic or density-matrix criteria. We will
stick to the energetic criterion as it also allows for eval-
uation of approximate energies, which can be used for a
domain-error correction (vide infra).

First, correlation-energy contribution for a given pair

is calculated and divided according to grains,
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where G indexes individual grains in the PAO space.
Here and in the following an unrestricted summation over
virtual indices means that the summation is restricted
according to the large starting domains.

Then the grain energies of the pair are sorted in the
descending order according to their absolute values, and
added up to a certain rough threshold to define starting
intermediate domains for the following procedure. In the
refinement step the amplitudes are recalculated using the
current domains and Eq. (1), and the current pair energy
is compared to the full pair energy (which will always
have a larger or equal absolute value). If the ratio is
below a threshold θPSI new grains will be added to the
domain and the refinement step will be repeated.

A similar procedure has been used before to define
Laplace orbital domains for excited states in Ref. 17 with
the difference that only OSI domains have been gener-
ated, and the approximate amplitudes have been calcu-
lated using Laplace transformation. In Ref. 55 a simi-
lar idea to define pair domains using approximate ampli-
tudes has been tested. For this the atom-wise pair en-
ergy contributions as in Eq. (2) have been calculated and
only PAOs on the atomic centers corresponding to large
e
ij
G have been included into pair domain. The conclusion
was that the resulting domains have to be rather large
for high accuracy, which is probably related to the afore-
mentioned problems of the Mulliken population analysis.

Note that instead of recalculating the amplitudes one
can use projection of the full T̄

ij
ab amplitudes to the

smaller domains,
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which is approximately two times less expensive, since
only one matrix in the current domain has to be diag-

onalized (the overlap matrix). T̄
ij
ab

∣
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proximate doubles amplitudes for the PSI domain of the
pair ij, and P

f→[ij] is the projector from the full PAO
space (or large PAO domain in which T̄

ij
ab is calculated)

to the current [ij]PSI domain,
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with S the PAO overlap matrix and S([ij])
+ the pseudo-

inverse of S in the [ij]PSI domain47. The projec-
tion method is applicable also in the situations for



3

which the perturbation theory does not work well,
e.g., for systems with multireference character, and can
be therefore of interest for the distinguishable clus-
ter method65–68 and other single-reference methods for
strong correlation.69–77 However, in our tests in sec. III
we simply recalculate the amplitudes using Eq. (1).

One can use the approximate amplitudes for a domain-
error correction, i.e.,
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where T
ij
ab denote final doubles amplitudes. The corre-

sponding energy correction can be calculated without any
additional cost, since the approximate energies are com-
puted anyway during the PSI domain construction pro-
cedure.

B. Improved estimate for the grain importance

Although the grain importance can be estimated as de-
scribed in the previous section, this estimate is not ideal.
It is related to partial charges and therefore shares their
basis-set (and starting-domains) dependence24. Apart
from that in a non-orthogonal basis a grain is able to
additionally represent energy contributions from other
grains, the capability which is completely neglected in
the estimate from Eq. (2).

Using an energy intermediate
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the estimate from Eq. (2) can be written as

e
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Instead of the delta function one can use projection from
the full space to a grain space,
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We denote this quantity as the grain capacity. It rep-
resents a least-square-fitted energy contribution that the
grain is capable to capture. Although the last projector
in Eq. (8) is not needed as long as G is a subset of the
large starting domains, we have inserted it for complete-
ness. Note that a pseudo-inverse of the overlap matrix
can be calculated as the square of a corresponding W ij

matrix.

Since one is interested not in the total capacity of the
grain, but rather in the amount of the energy the given
grain can add if included in domain, one should reduce its
capacity by the energy contribution which can be covered
by the already present grains. This reduction can be
easily calculated by projecting the total energy first onto
domain space and then projecting it onto the grain space,
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This capacity reduction is then subtracted from the cor-
responding full grain capacity ce

ij
G . The reduced grain

capacities rce
ij
G replace the grain energies in the proce-

dure described in sec. II A. Since time for the calcula-
tion of reduced grain capacities is negligible compared
to the diagonalizations required in the domain construc-
tion, and this estimation of the grain importance respects
the non-orthogonality of the virtual space, this procedure
was used in all test calculations, sec. III.

Finally, since grains usually have different sizes, we
scale the reduced grain capacities with the reciprocal
grain sizes. This way smaller grains which can contribute
the same amount to the energy as larger grains will be
included earlier.

As shown for OSVs23 and PNOs22 in order to have
smooth energy potential surfaces and accurate relative
energies it is important to have not only a completeness
threshold, but also to include all grains that have energy
contributions above some certain threshold. Therefore
similarly to Werner et al.22 additionally to the complete-
ness threshold θPSI we have introduced a grain-energy
threshold θegr, and if absolute value of the reduced ca-
pacity of a grain is larger than the threshold, the grain
is included into domain, even if the domain is already
complete according to the completeness threshold. Ad-
ditionally we have introduced a deletion threshold θdel to
reduce the size of the domains. If the reduced capacity
of a grain is below θdel, then it is not considered for the
domain, even if the domain is not complete yet.

The final procedure for PSI-domain construction is
summarized as pseudocode in Figure 1. First, integrals
K, a pseudocanonical transformation matrix W , ampli-
tudes T̄ and a pair energy Eij are calculated using the
large starting domain for a given pair ij. Then the scaled
capacities for all grains in the large domain are calcu-
lated and sorted according to their absolute values. This
array is then used to build the intermediate domains us-
ing an intermediate completeness criterion. In the main
step of the procedure a pseudocanonical transformation
matrix and amplitudes are calculated using the current
PSI domains, grain energies are recalculated for grains in
the PSI domain, and reduced grain capacities are evalu-
ated for the grains outside. The scaled absolute values of
the reduced grain capacities are utilized to find the next
grain to be added. Finally, the completeness of the PSI
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Calculate Kij
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aā, T̄

ij

ab, E
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∑

G
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domains
Calculate

(

ceijG/nPAO
G

)

and sort in the descending order of
absolute values
do ⊲ intermediate domain construction

Add another grain to the pair domain [ij] according to
(

ceijG/nPAO
G

)

array

while

∑
G∈[ij] |

ce
ij
G

|
∑

G |ce
ij
G

|
< θIntermediate

do ⊲ PSI domain construction
Calculate W ij

aā, T̄
ij

ab using the current PSI domain

Calculate eijG for grains in the domain

Calculate |rceijG |/nPAO
G for the rest, find max value → G′

Set ADDMORE = true
if

(

∑

G∈[ij] e
ij
G/Eij

)

> θPSI then

ADDMORE = false
end if

if
(

|rceij
G′ |/n

PAO
G′

)

> θegr then

ADDMORE = true
else if

(

|rceij
G′ |/n

PAO
G′

)

< θdel then
ADDMORE = false

end if

if ADDMORE then

Add the grain G′ to the pair domain [ij]
end if

while ADDMORE

FIG. 1. Pseudocode for the PSI-domain construction for a
pair ij

domain and the magnitude of the next grain is checked,
and either the new grain is added, and the last step is
repeated, or the current domain is the final PSI domain
for the pair ij.

III. RESULTS

The procedure described in sec. II has been imple-
mented in the development version of MOLPRO78,79, and
the local MP2 (LMP2) equations in the PSI domains
are solved using the local integrated tensor framework
(LITF)25. The PSI-domain generation is completely in-
dependent for each orbital pair and can be therefore effi-
ciently parallelized.

The PSI domains have been benchmarked using reac-
tions from Ref. 22 (studied before in Refs. 80–82) with
the aug-cc-pVTZ basis (cc-pVTZ for H atoms) and a dye
dyad solvent cluster from Ref. 47 (denoted in the fol-
lowing as DA) with the cc-pVTZ basis (492 correlated
electrons and 3962 AOs). For calculations in the aug-cc-
pVTZ basis the contributions of the most diffuse func-
tions of each angular momentum have been discarded in
the Pipek-Mezey localization83 (the cpldel=1 option in
MOLPRO).

The approximate amplitudes have been calculated as
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FIG. 2. Average pair-domain sizes for various pair types (s:
strong, sc: strong and close, scw: strong, close and weak,
scwd: strong, close, weak and distant) for the androstendione
precursor (AP) and the dye dyad solvent cluster (DA), and
for subshell and atom-wise gaining (s- and a-graining, respec-
tively). The thresholds correspond to θPSI, θegr, and θdel,
respectively.

the zeroth iteration of the local MP2 using very large
domains: Boughton-Pulay domains38 (threshold 0.985)
extended by two shells of neighboring atoms (the iext=2

option in MOLPRO). It has been shown in Ref. 22 that
the local errors of these domains are usually negligible.
In the case of reaction III from Ref. 22, which involves a
calculation of a transition state, a distance criterion in-
stead of the neighboring criterion was used as suggested
by Werner et al.: the Boughton-Pulay domains were ex-
tended by atoms which are closer than 6 bohr to the
original atoms in the domain (the rext=6 option in MOL-
PRO).

Figure 2 shows average pair-domain sizes for various
thresholds for the androstendione precursor (the largest
molecule from Reaction I, denoted as AP) and the DA
system for the subshell- (s-) and atom-wise (a-) grain-
ing. The domain sizes are shown for pairs with the
inter-orbital distance up to 1 bohr (strong pairs), up to 3
bohr (strong and close pairs), up to 8 bohr (strong, close
and weak pairs), and up to 15 bohr (strong, close, weak
and distant pairs). Pairs with the inter-orbital distance
larger than 15 bohr were neglected in the calculations.
Additionally the iext=2 and iext=1 domains are shown.
One can see that in opposite to the iext-domains the size
of PSI domains does not increase for pairs with larger
inter-orbital distances, and for loose deletion thresholds
the average size of domains actually decreases. The
subshell-grained domains are usually smaller than the
atom-grained ones. Only for loose deletion thresholds the
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FIG. 3. Relative errors in the pure and corrected correlation
energies (in %) compared to iext=2 result for AP (-5.14088
hartree) and DA system (-16.4309 hartree). The thresholds
correspond to θPSI, θegr, and θdel, respectively.

atom-wise graining yields smaller domains due to the fact
that we delete size-scaled grains, and therefore the large
atom grains are deleted more frequently than the smaller
subshell grains (leading to larger errors, vide infra). Be-
sides the use of the grain capacity slightly favors smaller
grains, i.e., two grains combined will have smaller (or the
same) capacity as the sum of individual capacities of the
grains.

The corresponding errors in the correlation energies
compared to iext=2 results can be found in Figure 3. The
zeroth-iteration correction improves results by an order
of magnitude. Apparently, the correction is less powerful
in correcting small contributions neglected in the case of a
loose deletion threshold. It can be seen especially well by
comparing uncorrected and corrected results for iext=1

and {0.999, 10−7, 10−8} domains. Obviously the effect
of the correction will be smaller in the case of coupled-
cluster calculations, since the missing parts will be cor-
rected with the zeroth iteration of MP2 only.

All other molecules in the test set show similar trends
in domain sizes and errors.84 Interestingly, with the
subshell-wise graining the virtual space can be truncated
even for small molecules like HCl: its average domain size
is 57 for all tested thresholds versus 64 for full domains.

The timings and peak memory usage for AP and DA
systems are given in Table I. The time for PSI do-
main construction is comparable to one LMP2 iteration
with the iext=2 domains, and the LMP2 iteration itself

TABLE I. Timings for the PSI domain construction step
(tPSI dom), one PAO-LMP2 iteration (titer.), and the total
time for PSI domains and solution of LMP2 equations using
algorithm from Paper I60 (in seconds), as well as peak mem-
ory usage in LITF (in megabytes) for AP and DA systems
with the atom-wise graining. The calculations have been per-
formed on 10 CPU cores using Intel Xeon E5-2690, 2.8 GHz
processor.

θPSI iext=2 iext=1 0.990 0.999 0.997 0.999 0.997

θegr 10−7 10−7 10−8 10−7 10−8

θdel 10−8 10−8 10−9 10−9 10−10

AP

tPSI dom 0 0 267 279 346 360 477

titer. 312 76 19 23 47 50 82

tPSI+MP2 3119 758 459 507 819 864 1300

Memorya 1663 784 440 474 676 634 921

DA

tPSI dom 0 0 280 287 383 390 623

titer. 541 211 42 45 116 118 225

tPSI+MP2 4870 1898 656 695 1431 1453 2645

Memorya 6688 5257 3597 3759 4368 4537 5075
a Peak memory usage per core. The actual memory require-
ments are lower.

is speeded up by a factor of 3 to 6 without a signifi-
cant loss of accuracy. The LMP2 iteration time with
the most accurate PSI domains considered here is nearly
the same as the iteration time with the much less accu-
rate iext=1 domains. The total computational time for
solving LMP2 equations (including the PSI domain con-
struction) is also significantly reduced compared to the
standard domains. Obviously, memory requirements are
also reduced, since the doubles amplitudes are much more
compact with the PSI domains. The number of iterations
required in the domain-generation procedure is strongly
dependent on the threshold for rough intermediate do-
mains. In our calculations we have employed a very loose
value for the intermediate-domain threshold (0.6), which
can be tighten to 0.8 or 0.9 to speed up the domain con-
struction. One can also use more elaborate techniques,
e.g., binary-search algorithm, i.e., adding a fixed number
of grains every time and once the completeness condition
is satisfied using the binary search to find the optimal
number of grains. The scaling of LMP2 equations using
the algorithm from Paper I60 with respect to the pair-
domain size is O(n2

pdomnudom), with npdom pair-domain
size, and nudom united-domain size. Therefore the iter-
ation time in Table I scales approximately quadratically
with respect to the average pair-domain sizes (since the
sizes of united domains vary less). One would gain even
more in the local coupled-cluster with doubles calcula-
tions, where one has contractions scaling with the fourth
power of the pair-domain size.

Deviations in reaction energies from iext=2 results (or
rext=6 for Reaction III) for the same choice of thresh-
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FIG. 4. Deviations in reaction energies for the subshell-wise
(top) and atom-wise (bottom) graining compared to iext=2 or
rext=6 (for Reaction III) results (in kJ/mol). The thresholds
correspond to θPSI, θegr, and θdel, respectively.

olds as before are plotted in Figure 4. Apparently, the
zeroth-iteration correction works very well even for rela-
tive energies: even with the loosest thresholds used here
(θPSI = 0.99, θegr = 10−7, θdel = 10−8) the corrected
reaction energies reach the sub-kilojoule accuracy. As
noted in previous studies22,81,82 the Reaction III involv-
ing a transition state calculation is very sensitive to the
choice of the large starting domains, cf. Figure 5. The
iext=2 domains lead to an error of around 3 kJ/mol for
the reaction barrier, and calculations with the rext=5 do-
mains result in an error of around 1 kJ/mol. The average
size of the standard domains noticeably increases by go-
ing from rext=5 to rext=6 domains. On the other hand
changes in the sizes of PSI domains are rather minor,
which underlines one of the main advantages of the PSI
domains - adaptivity to molecular systems of interest. It
is therefore advisable to use as large starting domains as
possible and let the PSI domains adapt to the problem
afterwords. For example, safer starting domains can be
generated using the differential overlap integral,54 or the
much simpler partial-charge overlap criterion introduced
in Paper I.60

Additionally the basis-set dependence of PSI domains
has been investigated using a glycine-dimer molecule.
The results can be found in Figure 6. The usual be-
haviour of the standard domains can be observed: by
increasing the basis set the ratio of average pair-domain
sizes to the full-domain sizes remains nearly constant.
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FIG. 5. Top: Deviations in the reaction barrier height for
the Reaction III for iext=2, rext=5 and PSI domains (us-
ing the subshell-wise graining) compared to rext=6 results (in
kJ/mol). Bottom: Average pair-domain sizes from approxi-
mate amplitudes calculated using different choices of starting
domains (for the transition state system of Reaction III). The
thresholds correspond to θPSI, θegr, and θdel, respectively.

Contrariwise, the ratio for PSI domains reduces quite fast
and is nearly halved by going from aug-cc-pVDZ to aug-
cc-pV5Z basis. As expected, this reduction is slightly
larger for the subshell-wise graining, although the dif-
ference to the atom-wise graining is rather small. The
energy accuracy remains nearly constant for the PSI do-
mains, whilst the quality of the results for standard do-
mains noticeably increases.

Summarizing the results, for fast exploratory calcula-
tions very loose thresholds (e.g., θPSI = 0.99, θegr = 10−7,
θdel = 10−8) with the zeroth-iteration correction can be
used; for more reasonable domains one should go to a
tighter θPSI threshold (e.g., θPSI = 0.999) which results
in an accuracy comparable to iext=1 setting; and for
highly accurate results even without the correction one
should tighten also other thresholds (e.g. θPSI = 0.997,
θegr = 10−8, θdel = 10−9 or even θdel = 10−10, which
is close to the set of thresholds recommended for PNO
calculations in Ref. 22).
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FIG. 6. Basis-set dependence of the iext and PSI domains
(with the subshell-wise (s) and atom-wise (a) graining), i.e.,
ratios of the average pair-domain sizes to the full-domain sizes
(top) and the corresponding relative errors in the correlation
energies compared to canonical results without (middle) and
with (bottom) the zeroth-iteration correction for a glycine-
dimer molecule. The thresholds correspond to θPSI, θegr, and
θdel, respectively.

IV. CONCLUSION

The PSI domains represent an analogue of PNOs in
the PAO space (or any other choice of the virtual space).
They share some advantages with PNOs, e.g., adaptivity
and systematical improvability, but do not require a new
set of orbitals. In contrast to the standard domains and
similar to PNOs the size of PSI domains does not increase
by going to more distant pairs, and has much lower basis-
set dependence. However, still 3 to 5 times more PAOs
than PNOs per pair are needed for the same accuracy.
The PAO integral transformations can be made quite in-
expensive (by using semi-direct integral transformations
to the PAO space60), and algorithms can take advantage
of using united domains,60,85 which makes PAOs inter-
esting not only for PAO-based local methods, but also
as an intermediate step in the PNO construction,22,51–54

and the PSI domains would allow larger (i.e., safer) start-
ing domains and speed up integral transformations. This
will be investigated in a forthcoming publication.

The subshell-wise graining turned out to be less impor-
tant, since the atom-wise grained domains are not much
worse than the subshell-wise domains. However, if one
wants to squeeze out all the potential of the PSI domains,
one should use a subatomic graining. One can also try

alternative grainings, e.g., according to diffuseness of the
functions, etc.

Further improvements in the PSI-domain generation
are feasible. One can use more sophisticated heuristic to
sort the grains, and one can a posteriori try to eliminate
grains from the domains which turn out to be not im-
portant in the final domains. In order to speed up the
domain generation one can add a fixed amount of grains
to the domains in each step, and use a binary search algo-
rithm to find the minimal amount of grains needed. For
an efficient code with a subshell-wise graining one has to
combine grains which usually occur together in order to
increase the block size (it is especially important for the
local integrated tensor framework25, which heavily relies
on reasonably sized blocks in the orbital spaces). And as
noted in sec. II A one can use projection of amplitudes
from large domains instead of recalculating them in the
domain generation.

The PSI domains can be used in various local correla-
tion methods. As mentioned already, one can use the PSI
domains in a PNO generation in order to speed up inte-
gral transformations in the PNO-based methods, which
usually constitute the bottleneck of the calculation. But
the PSI domains can be also important in cases where
one has to perform multiple integral transformations,
e.g., excited states with adaptive domains17,61–64 and
orbital-optimized methods,66,86–88 or for which standard
domains can fail, e.g., excited and transition states, and
strongly-correlated systems.65,73 Combined with tech-
niques from Paper I the PSI domains can considerably
speed up local correlation methods.
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17D. Kats and M. Schütz, J. Chem. Phys. 131, 124117 (2009).
18W. Meyer, Int. J. Quantum Chem. Symp. 5, 341 (1971).
19F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130,

114108 (2009).
20F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131,

064103 (2009).
21C. Hättig, D. P. Tew, and B. Helmich, J. Chem. Phys. 136,

204105 (2012).
22H.-J. Werner, G. Knizia, C. Krause, M. Schwilk, and M. Dorn-

bach, J. Chem. Theory Comput. 11, 484 (2015).
23J. Yang, Y. Kurashige, F. R. Manby, and G. K. L. Chan, J.

Chem. Phys. 134, 044123 (2011).
24J. Yang, G. K. L. Chan, F. R. Manby, M. Schütz, and H.-J.
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