Explicitly Correlated Methods

Several explicitly correlated methods were developed in the Werner Group

We have developed efficient explicitly correlated coupled-cluster [CCSD(T)-F12], multi-reference perturbation theory (CASPT2-F12), and multi-reference configuration interaction (MRCI-F12) methods, which strongly reduce the basis set incompleteness error by including terms that depend explicitly on the interelectronic distances. Extensive benchmarks have shown that with these methods triple-zeta basis sets are sufficient to reach better than quintuple-zeta quality for energetic quantities such as atomization energies, reaction energies, activation and excitation energies, ionization potentials, or electron affinities. Also the accuracy of other molecular properties, e.g. equilibrium structures or vibrational frequencies is significantly improved. We focus especially on combining these approaches with local correlation methods that can be applied to large molecules and to develop new programs to compute analytical energy gradients and response properties using F12 methods.

Book Chapter:

H.-J. Werner, C. Köppl, Q. Ma, M. Schwilk
"Explicitly Correlated Local Electron Correlation Methods" in:
Fragmentation: Toward Accurate Calculations on Complex Molecular Systems,
edited by Mark S. Gordon (2017)

Review:

 T. Shiozaki, and H.-J. Werner
Multireference explicitly correlated F12 theories
Mol. Phys. 111, 607 (2013) 

Publications:

Werner Győrffy and Hans-Joachim Werner
Analytical energy gradients for explicitly correlated wave functions. II. Explicitly correlated coupled cluster singles and doubles with perturbative triples corrections: CCSD(T)-F12
J. Chem. Phys. 148, 114104 (2018)

Werner Győrffy, Gerald Knizia, and Hans-Joachim Werner
Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory
J. Chem. Phys. 147, 214101 (2017)

Qianli Ma and Hans-Joachim Werner
Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals
J. Chem. Theory Comput. 14, 198 (2017)

Qianli Ma, Max Schwilk, Christoph Köppl, and Hans-Joachim Werner
Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12)
J. Chem. Theory Comput. 13, 4871 (2017)

Qianli Ma, Hans-Joachim Werner
Scalable Electron Correlation Methods 2: Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size
J. Chem. Theory Comput., 11, 5291–5304 (2015)

Daniel Kats, David Kreplin, Hans-Joachim Werner and Frederick R. Manby 
Accurate thermochemistry from explicitly correlated distinguishable cluster approximation
J. Chem. Phys. 142, 064111 (2015)

D.H. Bross, J.G. Hill, H.-J. Werner, and K.A. Peterson
Explicitly correlated composite thermochemistry of transition metal species
J. Chem. Phys. 139, 094302 (2013)

C. Krause und H.-J. Werner
Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals
Phys. Chem. Chem. Phys. 14, 7591-7604 (2012)

K.A. Peterson, C. Krause, H. Stoll, J.G. Hill und H.-J. Werner
Application of explicitly correlated local coupled cluster methods to molecules containing post-3d main group elements
Mol. Phys. 109, 2607 (2011)

T.B. Adler and H.-J. Werner
An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit
J. Chem. Phys. 135, 144117 (2011)

T. Shiozaki and H.-J. Werner
Explicitly correlated multireference configuration interaction with multiple reference functions: Avoided crossings and conical intersections
J. Chem. Phys. 134, 184104 (2011)

T. Shiozaki, G. Knizia and H.-J. Werner
Explicitly correlated multireference configuration interaction: MRCI-F12
J. Chem. Phys. 134, 034113 (2011)

H.-J. Werner, G. Knizia and F.R. Manby
Explicitly correlated coupled cluster methods with pair-specific geminals
Mol. Phys. 109, 407 (2011)

H.-J. Werner, T. B. Adler, G. Knizia, and F. R. Manby
Efficient explicitly correlated coupled-cluster approximations (Review)
in Recent Progress in Coupled Cluster Methods [Publ.: P. Čársky, J. Paldus, J. Pittner] (Springer, New York, 2010)

T. Shiozaki and H.-J. Werner
Communication: Second-order multireference perturbation theory with explicit correlation: CASPT2-F12
J. Chem. Phys. 133, 141103 (2010)

H.-J. Werner, G. Knizia, T.B. Adler and O. Marchetti
Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories
Z. Phys. Chem. 224, 493 (2010)

O. Marchetti and H.-J. Werner
Accurate Calculations of Intermolecular Interaction Energies Using Explicitly Correlated Coupled Cluster Wave Functions and a Dispersion-Weighted MP2 Method
J. Phys. Chem. A 113, 11580 (2009)

J.G. Hill, K.A. Peterson, G. Knizia and H.-J. Werner
Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets
J. Chem. Phys. 131, 194105 (2009)

T. B. Adler and H.-J. Werner
Local explicitly correlated coupled-cluster methods: Efficient removal of the basis set incompleteness and domain errors
J. Chem. Phys. 130, 241101 (2009)

T. B. Adler, H.-J. Werner and F. R. Manby
Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules
J. Chem. Phys. 130, 054106 (2009)

G. Knizia, T. B. Adler and H.-J. Werner
Simplified CCSD(T)-F12 methods: Theory and benchmarks
J. Chem. Phys. 130, 054104 (2009)

O. Marchetti and H.-J. Werner
Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions
Phys. Chem. Chem. Phys. 10, 3400 (2008)

H.-J. Werner
Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory
J. Chem. Phys. 129, 101103 (2008)

G. Knizia and H.-J. Werner
Explicitly correlated RMP2 for high-spin open-shell reference states
J. Chem. Phys. 128, 154103 (2008)

K. A. Peterson, T. B. Adler and H.-J. Werner
Systematically convergent basis sets for explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar
J. Chem. Phys. 128, 084102 (2008)

T. B. Adler, G. Knizia and H.-J. Werner
A simple and efficient CCSD(T)-F12 approximation
J. Chem. Phys. 127, 221106 (2007)

H.-J. Werner, T. B. Adler and F. R. Manby
General orbital invariant MP2-F12 theory
J. Chem. Phys. 126, 164102 (2007)

R. Polly, H.-J. Werner, P. Dahle and P. Taylor
Application of Gaussian-type geminals in local second-order Møller-Plesset perturbation theory
J. Chem. Phys. 124, 234107 (2006)

F. R. Manby, H.-J. Werner, T. B. Adler and A. J. May
Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor
J. Chem. Phys. 124, 094103 (2006)

F. R. Manby and H.-J. Werner
Explicitly correlated second-order perturbation theory using density fitting and local approximations
J. Chem. Phys. 124, 054114 (2006)

Benchmarks and applications

P. Botschwina, R. Oswald, G. Knizia and H.-J. Werner
High-level ab initio calculations for astrochemically relevant polyynes (HC2nH),their isomers (C2nH2) and their anions (C2nH-)
Z. Phys. Chem. 223, 447 (2009)

G. Rauhut, G. Knizia and H.-J. Werner
Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory
J. Chem. Phys. 130, 054105 (2009)

O. Marchetti and H.-J. Werner
Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions
Phys. Chem. Chem. Phys. 10, 3400 (2008)


Back to the home page of the institute

To the top of the page